
Journal Pre-proof

Detecting the Depth of Sedation in the Intensive Care Unit using a 2-channel
Electroencephalogram: An analysis with 2 machine learning models

Esteban A. Alarcón-Braga, Samuel Gruffaz, Cécile Delagarde, Axel Roques,
Jean-Clément Riff et al.

PII: S2772-5286(25)00053-6

DOI: https://doi.org/10.1016/j.neuri.2025.100238

Reference: NEURI 100238

To appear in: Neuroscience Informatics

Received date: 8 October 2025

Accepted date: 23 October 2025

Please cite this article as: E.A. Alarcón-Braga, S. Gruffaz, C. Delagarde et al., Detecting the Depth of Sedation in the Intensive Care Unit
using a 2-channel Electroencephalogram: An analysis with 2 machine learning models, Neuroscience Informatics, 100238,
doi: https://doi.org/10.1016/j.neuri.2025.100238.

This is a PDF of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and
formatting for readability. This version will undergo additional copyediting, typesetting and review before it is published in its final form.
As such, this version is no longer the Accepted Manuscript, but it is not yet the definitive Version of Record; we are providing this early
version to give early visibility of the article. Please note that Elsevier’s sharing policy for the Published Journal Article applies to this
version, see: https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article. Please also note that, during the
production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier.

https://doi.org/10.1016/j.neuri.2025.100238
https://doi.org/10.1016/j.neuri.2025.100238
https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article


Highlights

• The 2-channel EEG has a moderate power to discern between sedation states.
• The individual feature with the best performance was Beta Power–EEG2.
• A multimodal framework with variables not only derived from the EEG is needed.
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Detecting the Depth of Sedation in the Intensive Care Unit using a 2-channel 

Electroencephalogram: An analysis with 2 machine learning models 

 

ABSTRACT 

Existing methods to detect depth of sedation do not fully adjust to the characteristics of the ICU 

population. The aim of this study is to evaluate the performance of a two-channel EEG in 

predicting the depth of sedation in ICU patients. The electroencephalographic signal of 21 

patients admitted to the ICU were analyzed, and EEG features were calculated. These served as 

inputs in 2 machine learning models: Random Forest Classifier (RFC) and Support Vector 

Machine (SVM). The depth of sedation was assessed using the Richmond Agitation-Sedation 

Scale (RASS). Patients with RASS scores of -4/-5 were classified as “Deeply Sedated”, 

otherwise they were classified as “Not Deeply Sedated”. In the general models, all EEG features 

were used, after which sequential feature selection was conducted to improve performance and 

reduce the number of variables (reduced models). The general models showed a moderate 

ability to discriminate between sedation categories (RFC: average F1-score =0.60, SVM: 

average F1-score =0.59). This ability was improved in the reduced models (RFC: average F1-

score =0.65, SVM: average F1-score =0.72). It was observed that decreasing the number of 

features in the reduced SVM model from 6 to 3 features could achieve a similar performance 

while simplifying the model (SVM: average F1-score =0.72). An exploratory analysis showed 

that the individual feature with the best performance was Beta Power–EEG2. Overall, the 2-

channel EEG has a moderate power to discriminate between different states of sedation and may 

not be useful in this purpose if used as a single predictor. 

Keywords: Machine learning, Electroencephalogram, Depth of sedation, Intensive Care Unit, 

Support Vector Machine, Random Forest Classifier.  
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INTRODUCTION 

The administration of analgesics and sedatives is a necessary action in the Intensive Care Unit 

(ICU), required for conducting both diagnostic and therapeutic procedures, as well as for 

managing pain and anxiety. Ensuring the correct dosage of sedative drugs is important to achieve 

the desired depth of sedation (DoS) and avoid oversedation, as this has been associated with 

serious adverse events, such as: longer length of stay, increased duration of mechanical 

ventilation, and an overall increase in healthcare costs [1–4].   

Currently, there is no gold standard for measuring the DoS, and the most used method worldwide 

are behavioral scales, such as the Richmond Agitation-Sedation Scale (RASS) [5]. However, these 

methods are time consuming for the ICU staff and can lack sensitivity to quickly detect transient 

or slight changes in the DoS. Some of the most used technologies include the following: 

Bispectral Monitor, Narcotrend Monitor, PSA 4000 Monitor, among others [6]. These monitors, 

through an algorithm, end up calculating indices that supposedly reflect the DoS. 

One of the most commonly used index for assessing the DoS is the bispectral index (BIS). This 

index was originally developed to assess depth of anesthesia (DoA) in patients under general 

anesthesia (GA), and therefore it suffers from certain limitations when used in the ICU. For 

example, in the ICU, patients are not often paralyzed, so contamination with artifacts caused by 

muscle movements can be problematic for the BIS [7]. Furthermore, the BIS has proven to be 

slow in detecting changes in the state of consciousness, as well as presenting variations in its 

values depending on the anesthetic/sedative agent administered to the patient [8,9].  In addition 

to the BIS, there are also other indices on the market such as the Narcotrend Index (NI) or the 

Patient State Index (PSI), which also lack extensive validation in the ICU. These three indices are 

calculated using proprietary algorithms, so physicians do not know how they are calculated, and 

therefore it is impossible to make modifications or improvements to adjust these indices to the 

characteristics of the ICU population [10–12]. 
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The use of electroencephalographic (EEG) features for predicting the DoA in the operating room 

has been studied on multiple occasions in the scientific literature. In an article published by Gu et 

al. [13], the predictive performance of 4 EEG features (permutation entropy, 95% spectral edge 

frequency, SynchFastSlow, and Beta Ratio) was analyzed using an artificial neural network. Their 

findings revealed an 84.4% accuracy in identifying patients under GA and a 14% accuracy in 

detecting those under "deep anesthesia"[13]. Ortolani et al. [14] conducted a similar study in 2002, 

where they evaluated the predictive capabilities of 13 EEG features. Here the model showed an 

accuracy of 95%, and it bore a strong correlation with the BIS (Pearson’s correlation coefficient 

= 0.94) [14]. Apart from this, it has been observed previously by our team [15], that the DoA can 

be accurately assessed using a 1-channel EEG in the surgical context (Channel F8, AUC: 0.92 

±0.04) [15]. 

The direct use of EEG features to predict the DoS in the ICU, has not been widely studied. Among 

the limited available literature, we can find a study conducted by Nagaraj et al. [16] where the 

method of atomic decomposition is used to derive multiple features of the frontal EEG and thus 

attempt to predict whether the patient is awake or sedated. The best performance in this 

experiment resulted in a mean AUC of 0.91. However, this technique suffers from limitations. For 

instance, the authors did not use RASS scores of -2 or -3 in the assessment of the models, which 

diminishes its clinical utility. Additionally, they used multiple EEG channels, which complicates 

its use in the daily practice of the ICU [17]. 

The use of a 1-channel EEG to assess DoS, in addition to being simple and precise, promises to 

be accessible, inexpensive, and addresses the limitations of the previously mentioned indexes. All 

of this would allow for its widespread use in the clinical setting. However, to date, there are no 

studies that have evaluated the use of this tool in the ICU. Therefore, the main objective of this 

study is to assess the accuracy of EEG in predicting the DoS in patients admitted to the ICU. In 

this case, we decided to use a 2-channel EEG instead of a 1-channel EEG, with the purpose of 

enhancing the quality of the signal and acquiring more spatial information.  
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METHODOLOGY 

Study Design  

This is a single center, retrospective study conducted in the ICU of the Bégin Military Hospital 

between October 2021 and April 2024. The study has been approved by Pr. JE Bazin, chair of 

the ethics committee of the French Society of Anesthesiology (SFAR) under the number IRB 

00010254-2016–2018. 

Study Population 

This study included patients admitted to the ICU aged ≥ 18 and ≤ 80, who required sedation. We 

included patients from both medical and surgical backgrounds. We excluded patients with the 

following characteristics: 1) Patients admitted to the ICU due to brain injuries (stroke, traumatic 

brain injury, etc.) or with a history of these, or 2) patients that are chronic users of medication 

known to influence the central nervous system. 

Sedation Protocol 

The desired DoS for each patient was determined by the attending physician and the dose of 

each sedative/analgesic agent was adjusted accordingly. The sedative/analgesic agents used in 

the ICU were the following: Propofol (0.5-4 mg/kg/h), dexmedetomidine (0.7-1.4 mcg/kg/h), 

sufentanil (0.1-0.3 mcg/kg/h), midazolam (0.1 -0.3 mg/kg/h) and ketamine (load: 1-4.5 mg/kg, 

maintenance: 0.1-0.5 mg/kg/h). The exact combination in which this medication was 

administered varied according to the necessity of each patient and frequently evolved from one 

day to another. 

Assessment of Consciousness 

The DoS is routinely assessed in the unit using the RASS and the Glasgow Coma Scale (GCS). 

The RASS classifies the state of consciousness in 10 different levels that ranges from +4 to -5, 

where a score of -5 is synonymous of an unarousable patient and a score of +4 is synonymous 
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of a combative one [18]. The GCS is used to describe the extent of impaired consciousness, with 

values ranging from 3 to 15; it takes into consideration 3 parameters: eye-opening response, 

verbal response, and motor response [19]. The consciousness assessments were conducted twice 

(once before a standardized stimulation and once after the stimulation) every 30 minutes by 

trained personnel (attending physician or nurse in charge). In this case, the stimulation was done 

by tapping the patient's forehead five times with the tips of the index and middle fingers. At the 

same time, the dose of medication reported in the medical files for each patient was extracted, as 

well as any event that could have altered the patient's level of consciousness (e.g. change in 

position, oral/tracheal suctioning, etc.). 

EEG Acquisition 

A 2-channel EEG, placed at position Fp1 and C3 with a common reference, was used to record 

brain activity. The reference and the mass electrodes were placed at position A2 and FpZ, 

respectively. The impedance of the electrodes remained below 2 kΩ. The EEG signal was 

recorded at 100 Hz. 

Data Collection 

After the end of each recording, the obtained data was saved and subsequently transformed into 

CSV files for its processing and analysis. 

EEG Data Preprocessing 

For the signal filtering, we removed the spikes and applied a Butterworth bandpass filter, with 

cut-off frequencies set at 0.5 – 30 Hz. The decision to retain only frequencies within this range 

stemmed from 2 factor. First, above 20 Hz, there is little neural activity necessary for sedation 

monitoring, and second,  because certain drugs used during the patient’s sedation, such as 

ketamine, can induce higher-frequency oscillations [16,20]. 

EEG Processing 
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With the aim of differentiating each state (awake/light/moderate sedation vs  deep sedation) it 

was decided to extract the following features from the EEG for each channel (EEG1 for Fp1 and 

EEG2 for C3): Standard deviation, Root mean square, Skewness, Kurtosis, Crest Factor, 

absolute mean, mean value of power spectrum delta (delta power), mean value of power 

spectrum theta (theta power), mean value of power spectrum alpha (alpha power), mean value 

of power spectrum beta (beta power), sample entropy, spectral entropy, renyi entropy, 

approximate entropy, and permutation entropy. 

Data Analysis 

The capacity of the EEG features to predict the DoS was assessed using two different machine 

learning models. In both cases, the initial task to perform was the binary categorization of the 

DoS (the dependent variable). With this goal in mind, patients with a spontaneous RASS (RASS 

before the standardized stimulation) equal to or less than -4 were categorized as “deeply 

sedated”, while patients with a spontaneous RASS greater to or equal to -3 were categorized as 

“not deeply sedated”. Therefore, patients that were awake, lightly sedated, or moderately 

sedated were categorized in this last class. In this case, the RASS was chosen over the GCS as 

the preferred scale for the categorization of the dependent variable, since unlike the GCS, the 

RASS was created specifically to assesses the patient’s sedation depth. Thus, the predictions 

made by our models will be contrasted against the spontaneous RASS, which is our gold 

standard. 

After the categorization of the DoS, a Random Forest Classifier (RFC) and Support Vector 

Machine (SVM) models were developed. For both models, in case of missing values, 

observations were withdrawn from the dataset. Since the dataset consists of EEG recordings, 

each patient has multiple observations, and the duration of each recording varied from patient to 

patient. Additionally, patients in the ICU often require invasive procedures due to the severity of 

their pathologies. As a result, they are more frequently required to be placed under deep 

sedation rather than in light or moderate sedation.  This caused an imbalance in the classes of 
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the dataset, which was mitigated when developing the predictive models. With the purpose of 

balancing the dataset, we  decided to use the Synthetic Minority Over-sampling Technique 

(SMOTE) when training the models, as well as employing a stratified group K-fold cross-

validation (K = 5) as the resampling method, in order to achieve a representative distribution of 

the different classes across each fold. It is important to highlight that the stratification was done 

on patients.  

In the initial models we used the 30 EEG features that were calculated, from this moment 

forward we will refer to these initial models as the general models. The performance of the 

models was assessed using both, the average accuracy and the average F1 score across all folds. 

In addition to this, ROC curves with their respective mean areas under the curve (AUC) were 

calculated, as well as the average confusion matrix across the different test splits (only 

performed in the reduced SVM model with 3 variables) and the average F1 scores per class.  

Hyperparameter tuning was performed for each model with the aim of achieving the best 

possible performance.  

The importance of each feature in the models was assessed using Shapley Additive Explanations 

(Shapley/Shap Values). One of the most significant advantages of this technique is its 

applicability across various types of machine learning models, enabling a more consistent 

comparison between the features of each model. To facilitate this comparison, the absolute 

normalized mean Shap Values per feature were computed and visualized on a bar graph. In this 

case, L1-Normalization was used so that the sum of the contributions from all features amounts 

to a total of 1, allowing the contributions of each feature to the model output to be expressed as 

percentages. 

With the mission of developing the prediction model with the best performance and reducing 

the number of features, we decided to use the sequential forward feature selection method. The 

models after the feature selection contained a reduced number of features, thus from this 

moment forward they will be referred to as the reduced models. The importance of each feature 
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in these reduced models was also assessed using Shapley values. Hyperparameters were also 

modified to find those that provided the best predictive performance. 

Similar to the general model, the average F1 scores and average accuracy were calculated across 

all folds, as well as the average confusion matrix, mean AUC (with their corresponding ROC 

curves) and average F1 scores per class.  

We decided to conduct an exploratory analysis for each of the features. For this, the individual 

predictive performance of each feature was evaluated for each model. To do this the average F1 

score was used. 

RESULTS 

General Characteristics 

In the database, a total of 21 patients were included, which accounted for 607 observations and 

an average number of observations per subject of 28.9. Of these 607 observations, 36.7% were 

classified within the category of "not deeply sedated" and 63.3% within the category of "deeply 

sedated". The median age of the included patients was 68 years (IQR: 60-71). Of the 21 

patients, 13 were male (representing 62% of the total dataset). The primary cause of admission 

to the ICU, accounting for nearly half of the admissions, were pulmonary pathologies, such as 

acute respiratory distress syndrome or pneumonia. In second place, we have a tie between 

patients presenting with shock (hypovolemic and septic) and coma. In third place, we have 

pathologies of digestive causes such as pancreatitis and gastrointestinal bleeding. The totality of 

the admission causes to the ICU and details regarding the number of patients related to these are 

described in Table 1. 
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Table 1. Patients Characteristics 

Age in years (Median [IQR]) 68 [60 – 71] 

Male (n[%]) 13 [62%] 

Height in cm (Mean ± SD) 169.9 ± 7.6 

Weight in kg (Mean ± SD) 74.0 ± 18.4 

BMI (Mean ± SD) 25.7 ± 5.9 

Type of ICU admission  

Pneumology (n[%]) 10 [47%] 

Gastroenterology (n[%]) 2 [10%] 

Cardiovascular Surgery (n[%]) 1 [5%] 

Oncological Surgery (n[%]) 1 [5%] 

Shock (n[%]) 3 [14%] 

Intoxication (n[%]) 1 [5%] 

Coma (n[%]) 3 [14%] 

Medical vs Surgery admission  

Medical (n[%]) 19 [90%] 

Surgery (n[%]) 2 [10%] 

Sedatives used  

Propofol (n[%]) 12 [57%] 

Midazolam (n[%]) 9 [42%] 

Dexmetomidine (n[%]) 3 [14%] 

Sufentanil (n[%]) 12 [57%] 

Ketamine (n[%]) 1[5%] 

IQR: Interquartile Range, SD: Standard Deviation, CM: Centimeters, KG: Kilograms, BMI: 

Body Mass Index, ICU: Intensive Care Unit.  
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In general, 19 of the admissions were due to medical reasons and 2 were due to surgical reasons. 

The most commonly used sedative/analgesic agents were propofol and sufentanil. It is important 

to remember that in the ICU, it is sometimes necessary to use more than one sedative agent 

simultaneously to achieve the desired DoS. This approach allows the medical staff to benefit 

from the potentiated interactions of each drug and minimize the risk of adverse effects. 

General Prediction Models 

Regarding the general models (where all features extracted from the EEG were used), the 

Random Forest Classifier showed an average F1 score of 0.60 and an average accuracy of 0.59. 

Additionally, this model exhibited a mean AUC of 0.64; this metric along with its respective 

ROC curve can be seen in Figure 1A. Furthermore, the average F1 score was calculated per 

class, revealing a score of 0.52 for the "Deeply sedated" class and a score of 0.61 for the "Not 

deeply sedated" class.  

On the other hand, the Support Vector Machine (SVM) presented an average F1 score of 0.59 

and an average accuracy of 0.66. In this case, the mean AUC was 0.61; the ROC curve 

corresponding to this AUC can be visualized in Figure 1B. The average F1 score per class was 

0.16 for the "Not deeply sedated" class and 0.77 for the "Deeply sedated" class.  

The general SVM model is accurate in predicting "Deeply sedated" patients but has low 

predictive ability in predicting "Not Deeply sedated" patients. On the other hand, the overall 

RFC model has a more balanced predictive ability. 
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A)                                                                       B) 

 

Figure 1A – Mean ROC Curve for the general RFC model; Figure 1B – Mean ROC Curve for 

the general SVM model 

 

The Shapley values were calculated to obtain information regarding the individual importance 

of each feature for the model. In the general RFC model, as shown in Figure 2A, the 3 most 

important features for the model's predictive capacity were: beta power - EEG1, beta power - 

EEG2, and renyi entropy - EEG1. These three features accounted for 63% of the model's 

predictive ability. In the general SVM model, as seen in Figure 2B, the 3 most important 

features were: delta power - EEG2, delta power - EEG1, and theta power - EEG1. In this 

scenario, these three variables represent 99% of the model's output; in fact, only delta activity 

(delta power - EEG1 and delta power - EEG2) constitutes 97% of the contributions of all 

variables, while theta activity (theta power - EEG1 and theta power - EEG2) represents the 

remaining 3%. However, in the general RFC model, although beta activity (beta power EEG1 

and beta power EEG2) presents the highest contribution, around 53% of the model's output, 

there are 16 more features that constitute the remaining 47% of contributions. 
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A) 

 

B) 

 

Figure 2A – Absolute mean normalized Shap values per feature for the general RFC model; 

Figure 2B – Absolute mean normalized Shap values per feature for the general SVM model 
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Feature Selection and Reduced Prediction Models  

Following the evaluation of the performance of the general models, a sequential feature 

selection was performed with the aim of finding the model with the best performance and the 

fewest number of variables. We will refer to these models as the reduced models. 

When performing sequential feature selection in the RFC, we found that the features offering 

the best performance were as follows: beta power - EEG2, standard deviation - EEG1, delta 

power - EEG1, absolute mean - EEG1, sample entropy - EEG2. The reduced model showed an 

average accuracy of 0.65, an average F1 score of 0.65, and a mean AUC of 0.75 (Figure 3A). 

Additionally, the model exhibited an average F1 score per class of 0.57 for "Not deeply sedated" 

and 0.69 for the "Deeply sedated" class. 

In the case of the reduced SVM model, the selected features were as follows: beta power - 

EEG2, standard deviation - EEG1, absolute mean - EEG1, crest factor - EEG1, skewness - 

EEG2, and root mean square - EEG1. The reduced model presented an average accuracy of 

0.72, an average F1 score of 0.72, and a mean AUC of 0.73 (Figure 3B). When evaluating the 

performance per class, it was observed that the average F1 score for the "Not deeply sedated" 

class was 0.60, and for the "Deeply sedated" class, it was 0.76.  

The predictive ability of both the general models and the reduced models can be observed in 

Table 2. This table summarizes the average F1 scores, average accuracy, and mean AUC of each 

model.  
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A)                                                                 B) 

 

Figure 3A – Mean ROC Curve for the reduced RFC model; Figure 3B – Mean ROC Curve for 

the reduced SVM model 

 

Table 2. Model Performance 

Model Average F1 score Average Accuracy Mean AUC 

General Model - RFC 0.60 0.59 0.64 

General Model - SVM 0.59 0.66 0.61 

Reduced Model - RFC 0.65 0.65 0.75 

Reduced Model - SVM 0.72 0.72 0.73 

Reduced Model – SVM 

(3 variables) 

0.72 0.73 0.74 

RFC: Random Forest Classifier, SVM: Support Vector Machine, AUC: Area Under the Curve 
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Shapley values were also calculated for the reduced models. In both machine learning models, 

as observed in Figure 4A and Figure 4B, the feature that made the greatest contribution to the 

predictive capacity was beta power - EEG2. In the case of the reduced RFC model, beta power - 

EEG2 contributed 61% to the predictive output, and in the reduced SVM model, this same 

feature contributed 80% to the output. Apart from this, the remaining features of the reduced 

RFC model accounted from 8% to 13% of the performance. However, in the reduced SVM 

model, crest factor - EEG1 represented 15%, and skewness - EEG2 accounted for 4%; the 

remaining 3 variables contributed less than 1% to the performance of the model.  

A) 

 

B) 
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Figure 4A – Absolute mean normalized Shap values per feature for the reduced RFC model; 

Figure 4B – Absolute mean normalized Shap values per feature for the reduced SVM model 

 

Given these results, in order to explore further this algorithm, we decided to remove these 3 

variables with low contributions (absolute mean - EEG1, root mean square - EEG1, and 

standard deviation - EEG1) from the reduced SVM model. After this, the model continued to 

show a performance comparable, and in some metrics slightly better, than the initial reduced 

model (average F1 score: 0.72, average accuracy: 0.73, mean AUC: 0.74 [Figure 5A]), even in 

the assessment per class (average F1 score - "Not deeply sedated": 0.61, average F1 score - 

"Deeply sedated": 0.76 [figure 5B]). Subsequently, an ablation study was conducted, where one 

of the three variables included in the model was repeatedly removed, one at a time. Upon 

removing the crest factor – EEG1 variable, the model showed an average F1 score of 0.67; 

when removing skewness – EEG2, the average F1 score was 0.71; and when removing beta 

power – EEG2, the average F1 score was 0.61. 

A)                                                                          B) 

 

Figure 5A – Mean ROC Curve for the reduced SVM model with 3 variables;                       

Figure 5B – Average confusion matrix for the reduced SVM model with 3 variables 
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Exploratory Analysis of Individual Features 

An exploratory analysis was conducted where the performance of each model (RFC and SVM) 

was tested using each of the features individually. In the case of RFC, the top 5 features that 

performed the best (evaluated with averaged F1 scores) were as follows: beta power - EEG2, 

sample entropy - EEG2, renyi entropy - EEG1, beta power - EEG1, and kurtosis - EEG1. For 

SVM, the top 5 features were as follows: beta power -EEG2, sample entropy - EEG2, beta 

power - EEG1, approximate entropy - EEG2, and alpha power - EEG2. The specific F1 scores 

for each feature are summarized in Table 3. 

The feature with the best performance in both models was the beta power - EEG2. In the case of 

the RFC, it had an average F1 score of 0.65, while in the SVM, the beta power - EEG2 had an 

average F1 score of 0.70. 

Table 3. Individual Feature Performance per Model – Top 5 highest values 

Model Feature Individual F1 score 

 

 

RFC 

Beta Power – EEG2 0.65 

Sample Entropy - EEG2 0.63 

Renyi Entropy – EEG1 0.60 

Beta Power – EEG1 0.58 

Kurtosis – EEG1 0.58 

 

 

SVM 

Beta Power – EEG2 0.70 

Sample Entropy - EEG2 0.68 

Beta Power – EEG1 0.65 

Approximate Entropy – EEG2 0.65 

Alpha Power – EEG2 0.64 

RFC: Random Forest Classifier, SVM: Support Vector Machine 
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DISCUSSION 

General Aspects 

This study investigated the accuracy of a 2-channel EEG for predicting the DoS in the ICU. Two 

machine learning models were used for this purpose, the first being an RFC and the second an 

SVM. Overall, the two general models showed, through the average F1 score (RFC: 0.60, SVM: 

0.59), average accuracy (RFC: 0.59, SVM: 0.66), and mean AUC (RFC: 0.64, SVM: 0.61), a 

moderate ability for predicting the DoS. It is important to highlight that when evaluating the 

predictive capacity per class, we can see that despite the RFC model showing moderate ability 

for the prediction of DoS (average F1 score: “Deeply Sedated” = 0.52, “Not deeply sedated” = 

0.61), the SVM model exhibits high to moderate performance for the "Deeply Sedated" class, 

although it is poor for the "Not deeply sedated" class (average F1 score: “Deeply Sedated” = 

0.77, “Not deeply sedated” = 0.16).  

The reduced RFC model exhibits a superior predictive ability compared to the general model, 

showing an increase of 0.05 in the average F1 score (reduced RFC: 0.65), 0.06 in the average 

accuracy (reduced RFC: 0.65), and 0.11 in the mean AUC (reduced RFC: 0.75). However, 

despite this improvement, the model still has a moderate predictive ability, even when 

evaluating the average F1 scores per class (average F1 score: “Deeply Sedated” = 0.69, “Not 

deeply sedated” = 0.57). Similar to the reduced RFC model, the reduced SVM model showed an 

overall improvement in performance, with an increase of 0.13 in the average F1 score (reduced 

SVM: 0.72), 0.06 in average accuracy (reduced SVM: 0.72), and 0.12 in the mean AUC 

(reduced SVM: 0.73). However, viewed in general terms, the model's performance remained 

moderate. When evaluating performance per class, a significant improvement in the model's 

ability to classify "Not deeply sedated" patients was observed, with an increase of 0.44, while 

the ability to classify "Deeply sedated" patients remained almost unchanged (average F1 score: 

“Deeply Sedated” = 0.76, “Not deeply sedated” = 0.60). The best performance among the 
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models, was that shown by the reduced SVM model with 3 variables (average F1 score: 0.72, 

average accuracy: 0.73, mean AUC: 0.74). 

 As seen in the results section, the feature with the best individual performance was the beta 

power – EEG2 (average F1 score for RFC: 0.65, average F1 score for SVM: 0.70). The reasons 

why a model with only one feature can outperform one with multiple features, like the general 

model which has 30 features, are multiple. However, the most likely scenario is that the models 

with multiple features are suffering from overfitting. In other words, the algorithms are 

capturing noise instead of true underlying patterns necessary to make accurate predictions on 

unseen data. This same reason also explains why the reduced models have better predictive 

ability than the general models and could also explain why the reduced SVM model with 3 

variables has a slightly better performance in some metrics than the reduced SVM model with 6 

variables. 

As previously mentioned, the EEG's capacity for predicting sedation/anesthesia depth has been 

extensively studied in the context of surgical practice. Examples include studies like Shi et al., 

where an artificial neural network was used to predict the DoA using electroencephalographic 

signals from 4 channels, or the study by our team, that aimed to select the channel with the best 

predictive capacity from a 32-channel EEG [15,21]. However, there is limited literature on this 

specific topic regarding patients in ICU.  

The direct use of EEG features, without the signal passing through proprietary processing 

algorithms, has been less extensively evaluated in the ICU compared to indices like the BIS. 

However, within the existing literature, we have the study by Weber et al. [22], where in 

addition to the NI, parameters directly extracted from the EEG were evaluated, such as the 

spectral edge frequency (95%), the relative power (in the alpha, beta, theta, and delta band), the 

median frequency, among others. The EEG parameter that demonstrated the best predictive 

capacity was the relative power of the beta band, with a prediction probability of 0.80 in the 3-

level RASS and 0.75 in the 6-level RASS, followed in second place by the spectral edge 
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frequency [22]. Additionally, we have the study by Nagaraj et al. [16], whose objective was to 

assess the detection ability of deep sedation by EEG features extracted using the atomic 

decomposition (AD) method, and its comparison with spectral and entropy features. In this 

study, the combination of these three sets (AD, spectral, and entropy) achieved better 

discriminatory capacity (mean AUC: 0.91 (IQR: 0.81-0.98)) than these separately. Finally, there 

are authors that have attempted to use the raw EEG to assess the DoS, one of these authors is 

Sun et al. [23], who used raw EEG spectrograms without extracting any features for the 

identification of deeply sedated vs. non-sedated patients through the use of a recurrent neural 

network, obtaining an average AUC of 0.8 [16,23].  

When comparing the results of our study with similar ones, such as those by Nagaraj et al. or 

Sun et al. [16,23], where the RASS was used as the chosen method to evaluate DoS, we can 

observe that the results reported by these articles indicate a better discriminative ability than that 

of our models [16,26]. However, upon closer analysis of these articles, we can see that the two 

groups categorized according to the RASS were "Deeply sedated" (RASS = -4 and -5) vs 

"Awake" (RASS = 0 and -1). This categorization of the RASS excludes RASS scores of -2 and -

3 from the assessment, which facilitates the predictive task of the models, as these are 

consciousness states found at the extremes of the continuum. This characteristic may explain 

why the previously mentioned studies show a better discriminative capacity than what we have 

found. 

However, the problem with conducting this type of categorization is that it diminishes the 

clinical utility of prediction models, as these algorithms were created with the purpose of 

assisting physicians in distinguishing between states of consciousness that are difficult to 

discern clinically. Our model takes this clinical need into consideration, and therefore, when 

categorizing, we include RASS scores of -2 and -3 within the category of "Not deeply sedated," 

as these are consciousness states that are more difficult to clinically differentiate from deep 

sedation (RASS scores = -4 and -5).  
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In our study, the individual feature that performed best in both models (SVM and RFC) was the 

beta power - EEG2. Beta power also contributed the most to the predictions in the majority of 

the models. The study by Weber et al. [22], reports that among the studied variables, the relative 

power of the beta band had the best predictive capacity [22]. This may suggest that beta activity 

in the EEG plays an important role in detecting sedation depth. The beta band frequency is 

associated with alertness and active thinking [24]. Thus, it seems that the shift of activity from 

this frequency to lower frequencies such as theta and delta (associated with states of decreased 

consciousness such as sleep or sedation) could be providing the greatest predictive capacity to 

our models. It is this shift that appears to be captured by features calculated from the beta band 

frequency. The case of the general SVM model is different from the rest of the models, as this 

model, instead of taking beta activity as the main predictor, gives primary importance to delta 

activity and theta activity. This may explain why, in terms of predictive capacity per class, the 

general SVM model is very good at predicting patients who are "deeply sedated" but poor at 

identifying those categorized as "Not deeply sedated". Since, it seems to focus on the presence 

of these frequencies, associated with deep sleep and low brain activity, to perform the 

discriminatory task between classes rather than on the transition of activity between frequencies 

[24].  

Limitations 

This investigation encountered certain limitations during its development. The first limitation 

comes from the size of the database. The dataset consists of information collected from 21 

patients, however, similar studies such as those by Nagaraj et al. or Weber et al. included more 

than double the number of patients [16,22]. This makes the models more prone to overfitting, 

limiting the generalization of the findings [25]. Additionally, another limitation was the 

imbalance of our dataset, with more observations classified as "deeply sedated" than "not deeply 

sedated." This reflects the frequent need for deep sedation in ICU procedures. To address this, 

we applied an oversampling technique. 
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CONCLUSION 

This study assessed the predictive ability of 2 machine learning models on DoS in patients 

admitted to the ICU. The algorithm that showed the best performance in differentiating between 

deeply sedated patients and non-deeply sedated patients was the SVM with 3 variables (beta 

power - EEG2, crest factor - EEG1, skewness - EEG2). The EEG feature with the best 

individual predictive capacity was the beta power – EEG2. These models show promising 

results, as they represent one of the first steps towards the development of a multimodal 

framework. 
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