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Highlights

e The 2-channel EEG has a moderate power to discern between sedation states.
e The individual feature with the best performance was Beta Power—EEG2.
e A multimodal framework with variables not only derived from the EEG is needed.



Detecting the Depth of Sedation in the Intensive Care Unit using a 2-channel
Electroencephalogram: An analysis with 2 machine learning models

ABSTRACT

Existing methods to detect depth of sedation do not fully adjust to the characteristics of the ICU
population. The aim of this study is to evaluate the performance of a two-channel EEG in
predicting the depth of sedation in ICU patients. The electroencephalographic signal of 21
patients admitted to the ICU were analyzed, and EEG features were calculated. These served as
inputs in 2 machine learning models: Random Forest Classifier (RFC) and Support Vector
Machine (SVM). The depth of sedation was assessed using the Richmond Agitation-Sedation
Scale (RASS). Patients with RASS scores of -4/-5 were classified as “Deeply Sedated”,
otherwise they were classified as “Not Deeply Sedated”. In the general models, all EEG features
were used, after which sequential feature selection was conducted to improve performance and
reduce the number of variables (reduced models). The general models showed a moderate
ability to discriminate between sedation categories (RFC: average F1-score =0.60, SVM:
average F1-score =0.59). This ability was improved in the reduced models (RFC: average F1-
score =0.65, SVM: average F1-score =0.72). It was observed that decreasing the number of
features in the reduced SVM model from 6 to 3 features could achieve a similar performance
while simplifying the model (SVM: average F1-score =0.72). An exploratory analysis showed
that the individual feature with the best performance was Beta Power—EEG2. Overall, the 2-
channel EEG has a moderate power to discriminate between different states of sedation and may

not be useful in this purpose if used as a single predictor.

Keywords: Machine learning, Electroencephalogram, Depth of sedation, Intensive Care Unit,

Support Vector Machine, Random Forest Classifier.



INTRODUCTION

The administration of analgesics and sedatives is a necessary action in the Intensive Care Unit
(ICU), required for conducting both diagnostic and therapeutic procedures, as well as for
managing pain and anxiety. Ensuring the correct dosage of sedative drugs is important to achieve
the desired depth of sedation (DoS) and avoid oversedation, as this has been associated with
serious adverse events, such as: longer length of stay, increased duration of mechanical

ventilation, and an overall increase in healthcare costs [1-4].

Currently, there is no gold standard for measuring the DoS, and the most used method worldwide
are behavioral scales, such as the Richmond Agitation-Sedation Scale (RASS) [5]. However, these
methods are time consuming for the ICU staff and can lack sensitivity to quickly detect transient
or slight changes in the DoS. Some of the most used technologies include the following:
Bispectral Monitor, Narcotrend Monitor, PSA 4000 Monitor, among others [6]. These monitors,

through an algorithm, end up calculating indices that supposedly reflect the DoS.

One of the most commonly used index for assessing the DoS is the bispectral index (BIS). This
index was originally developed to assess depth of anesthesia (DoA) in patients under general
anesthesia (GA), and therefore it suffers from certain limitations when used in the ICU. For
example, in the ICU, patients are not often paralyzed, so contamination with artifacts caused by
muscle movements can be problematic for the BIS [7]. Furthermore, the BIS has proven to be
slow in detecting changes in the state of consciousness, as well as presenting variations in its
values depending on the anesthetic/sedative agent administered to the patient [8,9]. In addition
to the BIS, there are also other indices on the market such as the Narcotrend Index (NI) or the
Patient State Index (PSI), which also lack extensive validation in the ICU. These three indices are
calculated using proprietary algorithms, so physicians do not know how they are calculated, and
therefore it is impossible to make modifications or improvements to adjust these indices to the

characteristics of the ICU population [10-12].



The use of electroencephalographic (EEG) features for predicting the DoA in the operating room
has been studied on multiple occasions in the scientific literature. In an article published by Gu et
al. [13], the predictive performance of 4 EEG features (permutation entropy, 95% spectral edge
frequency, SynchFastSlow, and Beta Ratio) was analyzed using an artificial neural network. Their
findings revealed an 84.4% accuracy in identifying patients under GA and a 14% accuracy in
detecting those under "deep anesthesia"[13]. Ortolani et al. [ 14] conducted a similar study in 2002,
where they evaluated the predictive capabilities of 13 EEG features. Here the model showed an
accuracy of 95%, and it bore a strong correlation with the BIS (Pearson’s correlation coefficient
=0.94) [14]. Apart from this, it has been observed previously by our team [15], that the DoA can
be accurately assessed using a 1-channel EEG in the surgical context (Channel F8, AUC: 0.92

+0.04) [15].

The direct use of EEG features to predict the DoS in the ICU, has not been widely studied. Among
the limited available literature, we can find a study conducted by Nagaraj et al. [16] where the
method of atomic decomposition is used to derive multiple features of the frontal EEG and thus
attempt to predict whether the patient is awake or sedated. The best performance in this
experiment resulted in a mean AUC of 0.91. However, this technique suffers from limitations. For
instance, the authors did not use RASS scores of -2 or -3 in the assessment of the models, which
diminishes its clinical utility. Additionally, they used multiple EEG channels, which complicates

its use in the daily practice of the ICU [17].

The use of a 1-channel EEG to assess DoS, in addition to being simple and precise, promises to
be accessible, inexpensive, and addresses the limitations of the previously mentioned indexes. All
of this would allow for its widespread use in the clinical setting. However, to date, there are no
studies that have evaluated the use of this tool in the ICU. Therefore, the main objective of this
study is to assess the accuracy of EEG in predicting the DoS in patients admitted to the ICU. In
this case, we decided to use a 2-channel EEG instead of a 1-channel EEG, with the purpose of

enhancing the quality of the signal and acquiring more spatial information.



METHODOLOGY

Study Design

This is a single center, retrospective study conducted in the ICU of the Bégin Military Hospital
between October 2021 and April 2024. The study has been approved by Pr. JE Bazin, chair of
the ethics committee of the French Society of Anesthesiology (SFAR) under the number IRB

00010254-2016-2018.

Study Population

This study included patients admitted to the ICU aged > 18 and < 80, who required sedation. We
included patients from both medical and surgical backgrounds. We excluded patients with the
following characteristics: 1) Patients admitted to the ICU due to brain injuries (stroke, traumatic
brain injury, etc.) or with a history of these, or 2) patients that are chronic users of medication

known to influence the central nervous system.

Sedation Protocol

The desired DoS for each patient was determined by the attending physician and the dose of
each sedative/analgesic agent was adjusted accordingly. The sedative/analgesic agents used in
the ICU were the following: Propofol (0.5-4 mg/kg/h), dexmedetomidine (0.7-1.4 mcg/kg/h),
sufentanil (0.1-0.3 mcg/kg/h), midazolam (0.1 -0.3 mg/kg/h) and ketamine (load: 1-4.5 mg/kg,
maintenance: 0.1-0.5 mg/kg/h). The exact combination in which this medication was
administered varied according to the necessity of each patient and frequently evolved from one

day to another.

Assessment of Consciousness

The DoS is routinely assessed in the unit using the RASS and the Glasgow Coma Scale (GCS).
The RASS classifies the state of consciousness in 10 different levels that ranges from +4 to -5,

where a score of -5 is synonymous of an unarousable patient and a score of +4 is synonymous



of'a combative one [18]. The GCS is used to describe the extent of impaired consciousness, with
values ranging from 3 to 15; it takes into consideration 3 parameters: eye-opening response,
verbal response, and motor response [19]. The consciousness assessments were conducted twice
(once before a standardized stimulation and once after the stimulation) every 30 minutes by
trained personnel (attending physician or nurse in charge). In this case, the stimulation was done
by tapping the patient's forehead five times with the tips of the index and middle fingers. At the
same time, the dose of medication reported in the medical files for each patient was extracted, as
well as any event that could have altered the patient's level of consciousness (e.g. change in

position, oral/tracheal suctioning, etc.).

EEG Acquisition

A 2-channel EEG, placed at position Fpl and C3 with a common reference, was used to record
brain activity. The reference and the mass electrodes were placed at position A2 and FpZ,
respectively. The impedance of the electrodes remained below 2 kQ. The EEG signal was

recorded at 100 Hz.

Data Collection

After the end of each recording, the obtained data was saved and subsequently transformed into

CSV files for its processing and analysis.

EEG Data Preprocessing

For the signal filtering, we removed the spikes and applied a Butterworth bandpass filter, with
cut-off frequencies set at 0.5 — 30 Hz. The decision to retain only frequencies within this range
stemmed from 2 factor. First, above 20 Hz, there is little neural activity necessary for sedation
monitoring, and second, because certain drugs used during the patient’s sedation, such as

ketamine, can induce higher-frequency oscillations [16,20].

EEG Processing



With the aim of differentiating each state (awake/light/moderate sedation vs deep sedation) it
was decided to extract the following features from the EEG for each channel (EEG1 for Fpl and
EEG?2 for C3): Standard deviation, Root mean square, Skewness, Kurtosis, Crest Factor,
absolute mean, mean value of power spectrum delta (delta power), mean value of power
spectrum theta (theta power), mean value of power spectrum alpha (alpha power), mean value
of power spectrum beta (beta power), sample entropy, spectral entropy, renyi entropy,

approximate entropy, and permutation entropy.

Data Analysis

The capacity of the EEG features to predict the DoS was assessed using two different machine
learning models. In both cases, the initial task to perform was the binary categorization of the
DoS (the dependent variable). With this goal in mind, patients with a spontaneous RASS (RASS
before the standardized stimulation) equal to or less than -4 were categorized as “deeply
sedated”, while patients with a spontaneous RASS greater to or equal to -3 were categorized as
“not deeply sedated”. Therefore, patients that were awake, lightly sedated, or moderately
sedated were categorized in this last class. In this case, the RASS was chosen over the GCS as
the preferred scale for the categorization of the dependent variable, since unlike the GCS, the
RASS was created specifically to assesses the patient’s sedation depth. Thus, the predictions
made by our models will be contrasted against the spontaneous RASS, which is our gold

standard.

After the categorization of the DoS, a Random Forest Classifier (RFC) and Support Vector
Machine (SVM) models were developed. For both models, in case of missing values,
observations were withdrawn from the dataset. Since the dataset consists of EEG recordings,
each patient has multiple observations, and the duration of each recording varied from patient to
patient. Additionally, patients in the ICU often require invasive procedures due to the severity of
their pathologies. As a result, they are more frequently required to be placed under deep

sedation rather than in light or moderate sedation. This caused an imbalance in the classes of



the dataset, which was mitigated when developing the predictive models. With the purpose of
balancing the dataset, we decided to use the Synthetic Minority Over-sampling Technique
(SMOTE) when training the models, as well as employing a stratified group K-fold cross-
validation (K = 5) as the resampling method, in order to achieve a representative distribution of
the different classes across each fold. It is important to highlight that the stratification was done

on patients.

In the initial models we used the 30 EEG features that were calculated, from this moment
forward we will refer to these initial models as the general models. The performance of the
models was assessed using both, the average accuracy and the average F1 score across all folds.
In addition to this, ROC curves with their respective mean areas under the curve (AUC) were
calculated, as well as the average confusion matrix across the different test splits (only
performed in the reduced SVM model with 3 variables) and the average F1 scores per class.
Hyperparameter tuning was performed for each model with the aim of achieving the best

possible performance.

The importance of each feature in the models was assessed using Shapley Additive Explanations
(Shapley/Shap Values). One of the most significant advantages of this technique is its
applicability across various types of machine learning models, enabling a more consistent
comparison between the features of each model. To facilitate this comparison, the absolute
normalized mean Shap Values per feature were computed and visualized on a bar graph. In this
case, L1-Normalization was used so that the sum of the contributions from all features amounts
to a total of 1, allowing the contributions of each feature to the model output to be expressed as

percentages.

With the mission of developing the prediction model with the best performance and reducing
the number of features, we decided to use the sequential forward feature selection method. The
models after the feature selection contained a reduced number of features, thus from this

moment forward they will be referred to as the reduced models. The importance of each feature



in these reduced models was also assessed using Shapley values. Hyperparameters were also

modified to find those that provided the best predictive performance.

Similar to the general model, the average F1 scores and average accuracy were calculated across
all folds, as well as the average confusion matrix, mean AUC (with their corresponding ROC

curves) and average F1 scores per class.

We decided to conduct an exploratory analysis for each of the features. For this, the individual
predictive performance of each feature was evaluated for each model. To do this the average F1

score was used.

RESULTS

General Characteristics

In the database, a total of 21 patients were included, which accounted for 607 observations and
an average number of observations per subject of 28.9. Of these 607 observations, 36.7% were
classified within the category of "not deeply sedated" and 63.3% within the category of "deeply
sedated". The median age of the included patients was 68 years (IQR: 60-71). Of the 21
patients, 13 were male (representing 62% of the total dataset). The primary cause of admission
to the ICU, accounting for nearly half of the admissions, were pulmonary pathologies, such as
acute respiratory distress syndrome or pneumonia. In second place, we have a tie between
patients presenting with shock (hypovolemic and septic) and coma. In third place, we have
pathologies of digestive causes such as pancreatitis and gastrointestinal bleeding. The totality of
the admission causes to the ICU and details regarding the number of patients related to these are

described in Table 1.



Table 1. Patients Characteristics

Age in years (Median [IQR]) 68 [60 —71]
Male (n[%]) 13 [62%]
Height in cm (Mean + SD) 1699+ 7.6
Weight in kg (Mean + SD) 74.0+18.4
BMI (Mean + SD) 25.7+59
Type of ICU admission

Pneumology (n[%]) 10 [47%]
Gastroenterology (n[%]) 2 [10%)]
Cardiovascular Surgery (n[%]) 1 [5%]
Oncological Surgery (n[%]) 1 [5%]
Shock (n[%]) 3 [14%]
Intoxication (n[%]) 1 [5%]
Coma (n[%]) 3 [14%]

Medical vs Surgery admission
Medical (n[%]) 19 [90%)]
Surgery (n[%]) 2 [10%)]

Sedatives used

Propofol (n[%]) 12 [57%]
Midazolam (n[%]) 9 [42%]
Dexmetomidine (n[%]) 3 [14%)]
Sufentanil (n[%]) 12 [57%]
Ketamine (n[%]) 1[5%]

IQR: Interquartile Range, SD: Standard Deviation, CM: Centimeters, KG: Kilograms, BMI:

Body Mass Index, ICU: Intensive Care Unit.



In general, 19 of the admissions were due to medical reasons and 2 were due to surgical reasons.
The most commonly used sedative/analgesic agents were propofol and sufentanil. It is important
to remember that in the ICU, it is sometimes necessary to use more than one sedative agent
simultaneously to achieve the desired DoS. This approach allows the medical staff to benefit

from the potentiated interactions of each drug and minimize the risk of adverse effects.

General Prediction Models

Regarding the general models (where all features extracted from the EEG were used), the
Random Forest Classifier showed an average F1 score of 0.60 and an average accuracy of 0.59.
Additionally, this model exhibited a mean AUC of 0.64; this metric along with its respective
ROC curve can be seen in Figure 1A. Furthermore, the average F1 score was calculated per
class, revealing a score of 0.52 for the "Deeply sedated" class and a score of 0.61 for the "Not

deeply sedated" class.

On the other hand, the Support Vector Machine (SVM) presented an average F1 score of 0.59
and an average accuracy of 0.66. In this case, the mean AUC was 0.61; the ROC curve
corresponding to this AUC can be visualized in Figure 1B. The average F1 score per class was

0.16 for the "Not deeply sedated" class and 0.77 for the "Deeply sedated" class.

The general SVM model is accurate in predicting "Deeply sedated" patients but has low
predictive ability in predicting "Not Deeply sedated" patients. On the other hand, the overall

RFC model has a more balanced predictive ability.
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Figure 1A — Mean ROC Curve for the general RFC model; Figure 1B — Mean ROC Curve for
the general SVM model

The Shapley values were calculated to obtain information regarding the individual importance
of each feature for the model. In the general RFC model, as shown in Figure 2A, the 3 most
important features for the model's predictive capacity were: beta power - EEG1, beta power -
EEG2, and renyi entropy - EEG1. These three features accounted for 63% of the model's
predictive ability. In the general SVM model, as seen in Figure 2B, the 3 most important
features were: delta power - EEG2, delta power - EEG1, and theta power - EEGI1. In this
scenario, these three variables represent 99% of the model's output; in fact, only delta activity
(delta power - EEG1 and delta power - EEG2) constitutes 97% of the contributions of all
variables, while theta activity (theta power - EEG1 and theta power - EEG2) represents the
remaining 3%. However, in the general RFC model, although beta activity (beta power EEG1
and beta power EEG2) presents the highest contribution, around 53% of the model's output,

there are 16 more features that constitute the remaining 47% of contributions.
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Figure 2B — Absolute mean normalized Shap values per feature for the general SVM model
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Feature Selection and Reduced Prediction Models

Following the evaluation of the performance of the general models, a sequential feature
selection was performed with the aim of finding the model with the best performance and the

fewest number of variables. We will refer to these models as the reduced models.

When performing sequential feature selection in the RFC, we found that the features offering
the best performance were as follows: beta power - EEG2, standard deviation - EEG1, delta
power - EEG1, absolute mean - EEG1, sample entropy - EEG2. The reduced model showed an
average accuracy of 0.65, an average F1 score of 0.65, and a mean AUC of 0.75 (Figure 3A).
Additionally, the model exhibited an average F1 score per class of 0.57 for "Not deeply sedated"

and 0.69 for the "Deeply sedated" class.

In the case of the reduced SVM model, the selected features were as follows: beta power -
EEG2, standard deviation - EEG1, absolute mean - EEG1, crest factor - EEG1, skewness -
EEG?2, and root mean square - EEG1. The reduced model presented an average accuracy of
0.72, an average F1 score of 0.72, and a mean AUC of 0.73 (Figure 3B). When evaluating the
performance per class, it was observed that the average F1 score for the "Not deeply sedated"

class was 0.60, and for the "Deeply sedated" class, it was 0.76.

The predictive ability of both the general models and the reduced models can be observed in
Table 2. This table summarizes the average F1 scores, average accuracy, and mean AUC of each

model.
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Figure 3A — Mean ROC Curve for the reduced RFC model; Figure 3B — Mean ROC Curve for

the reduced SVM model

Table 2. Model Performance

Model Average F1 score Average Accuracy Mean AUC
General Model - RFC  0.60 0.59 0.64
General Model - SVM  0.59 0.66 0.61
Reduced Model - RFC  0.65 0.65 0.75
Reduced Model - SVM  0.72 0.72 0.73
Reduced Model - SVM  0.72 0.73 0.74

(3 variables)

RFC: Random Forest Classifier, SVM: Support Vector Machine, AUC: Area Under the Curve
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Shapley values were also calculated for the reduced models. In both machine learning models,
as observed in Figure 4A and Figure 4B, the feature that made the greatest contribution to the
predictive capacity was beta power - EEG2. In the case of the reduced RFC model, beta power -
EEG?2 contributed 61% to the predictive output, and in the reduced SVM model, this same
feature contributed 80% to the output. Apart from this, the remaining features of the reduced
RFC model accounted from 8% to 13% of the performance. However, in the reduced SVM
model, crest factor - EEG1 represented 15%, and skewness - EEG2 accounted for 4%; the

remaining 3 variables contributed less than 1% to the performance of the model.
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Figure 4A — Absolute mean normalized Shap values per feature for the reduced RFC model;
Figure 4B — Absolute mean normalized Shap values per feature for the reduced SVM model

Given these results, in order to explore further this algorithm, we decided to remove these 3
variables with low contributions (absolute mean - EEG1, root mean square - EEG1, and
standard deviation - EEG1) from the reduced SVM model. After this, the model continued to
show a performance comparable, and in some metrics slightly better, than the initial reduced
model (average F1 score: 0.72, average accuracy: 0.73, mean AUC: 0.74 [Figure 5A]), even in
the assessment per class (average F1 score - "Not deeply sedated": 0.61, average F1 score -
"Deeply sedated": 0.76 [figure SB]). Subsequently, an ablation study was conducted, where one
of the three variables included in the model was repeatedly removed, one at a time. Upon
removing the crest factor — EEG1 variable, the model showed an average F1 score of 0.67;
when removing skewness — EEG2, the average F1 score was 0.71; and when removing beta

power — EEG2, the average F1 score was 0.61.
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Figure SA — Mean ROC Curve for the reduced SVM model with 3 variables;
Figure 5B — Average confusion matrix for the reduced SVM model with 3 variables
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Exploratory Analysis of Individual Features

An exploratory analysis was conducted where the performance of each model (RFC and SVM)
was tested using each of the features individually. In the case of RFC, the top 5 features that
performed the best (evaluated with averaged F1 scores) were as follows: beta power - EEG2,
sample entropy - EEG2, renyi entropy - EEG1, beta power - EEG1, and kurtosis - EEG1. For
SVM, the top 5 features were as follows: beta power -EEG2, sample entropy - EEG2, beta
power - EEG1, approximate entropy - EEG2, and alpha power - EEG2. The specific F1 scores

for each feature are summarized in Table 3.

The feature with the best performance in both models was the beta power - EEG2. In the case of
the RFC, it had an average F1 score of 0.65, while in the SVM, the beta power - EEG2 had an

average F1 score of 0.70.

Table 3. Individual Feature Performance per Model — Top 5 highest values

Model Feature Individual F1 score
Beta Power — EEG2 0.65
Sample Entropy - EEG2 0.63

RFC Renyi Entropy — EEG1 0.60
Beta Power — EEG1 0.58
Kurtosis — EEG1 0.58
Beta Power — EEG2 0.70
Sample Entropy - EEG2 0.68

SVM Beta Power — EEG1 0.65
Approximate Entropy — EEG2 0.65
Alpha Power — EEG2 0.64

RFC: Random Forest Classifier, SVM: Support Vector Machine

17



DISCUSSION

General Aspects

This study investigated the accuracy of a 2-channel EEG for predicting the DoS in the ICU. Two
machine learning models were used for this purpose, the first being an RFC and the second an
SVM. Overall, the two general models showed, through the average F1 score (RFC: 0.60, SVM:
0.59), average accuracy (RFC: 0.59, SVM: 0.66), and mean AUC (RFC: 0.64, SVM: 0.61), a
moderate ability for predicting the DoS. It is important to highlight that when evaluating the
predictive capacity per class, we can see that despite the RFC model showing moderate ability
for the prediction of DoS (average F1 score: “Deeply Sedated” = 0.52, “Not deeply sedated” =
0.61), the SVM model exhibits high to moderate performance for the "Deeply Sedated" class,
although it is poor for the "Not deeply sedated" class (average F1 score: “Deeply Sedated” =

0.77, “Not deeply sedated” = 0.16).

The reduced RFC model exhibits a superior predictive ability compared to the general model,
showing an increase of 0.05 in the average F1 score (reduced RFC: 0.65), 0.06 in the average
accuracy (reduced RFC: 0.65), and 0.11 in the mean AUC (reduced RFC: 0.75). However,
despite this improvement, the model still has a moderate predictive ability, even when
evaluating the average F1 scores per class (average F1 score: “Deeply Sedated” = 0.69, “Not
deeply sedated” = 0.57). Similar to the reduced RFC model, the reduced SVM model showed an
overall improvement in performance, with an increase of 0.13 in the average F1 score (reduced
SVM: 0.72), 0.06 in average accuracy (reduced SVM: 0.72), and 0.12 in the mean AUC
(reduced SVM: 0.73). However, viewed in general terms, the model's performance remained
moderate. When evaluating performance per class, a significant improvement in the model's
ability to classify "Not deeply sedated" patients was observed, with an increase of 0.44, while
the ability to classify "Deeply sedated" patients remained almost unchanged (average F1 score:

“Deeply Sedated” = 0.76, “Not deeply sedated” = 0.60). The best performance among the
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models, was that shown by the reduced SVM model with 3 variables (average F1 score: 0.72,

average accuracy: 0.73, mean AUC: 0.74).

As seen in the results section, the feature with the best individual performance was the beta
power — EEG2 (average F1 score for RFC: 0.65, average F1 score for SVM: 0.70). The reasons
why a model with only one feature can outperform one with multiple features, like the general
model which has 30 features, are multiple. However, the most likely scenario is that the models
with multiple features are suffering from overfitting. In other words, the algorithms are
capturing noise instead of true underlying patterns necessary to make accurate predictions on
unseen data. This same reason also explains why the reduced models have better predictive
ability than the general models and could also explain why the reduced SVM model with 3
variables has a slightly better performance in some metrics than the reduced SVM model with 6

variables.

As previously mentioned, the EEG's capacity for predicting sedation/anesthesia depth has been
extensively studied in the context of surgical practice. Examples include studies like Shi et al.,
where an artificial neural network was used to predict the DoA using electroencephalographic
signals from 4 channels, or the study by our team, that aimed to select the channel with the best
predictive capacity from a 32-channel EEG [15,21]. However, there is limited literature on this

specific topic regarding patients in ICU.

The direct use of EEG features, without the signal passing through proprietary processing
algorithms, has been less extensively evaluated in the ICU compared to indices like the BIS.
However, within the existing literature, we have the study by Weber et al. [22], where in
addition to the NI, parameters directly extracted from the EEG were evaluated, such as the
spectral edge frequency (95%), the relative power (in the alpha, beta, theta, and delta band), the
median frequency, among others. The EEG parameter that demonstrated the best predictive
capacity was the relative power of the beta band, with a prediction probability of 0.80 in the 3-

level RASS and 0.75 in the 6-level RASS, followed in second place by the spectral edge
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frequency [22]. Additionally, we have the study by Nagaraj et al. [16], whose objective was to
assess the detection ability of deep sedation by EEG features extracted using the atomic
decomposition (AD) method, and its comparison with spectral and entropy features. In this
study, the combination of these three sets (AD, spectral, and entropy) achieved better
discriminatory capacity (mean AUC: 0.91 (IQR: 0.81-0.98)) than these separately. Finally, there
are authors that have attempted to use the raw EEG to assess the DoS, one of these authors is
Sun et al. [23], who used raw EEG spectrograms without extracting any features for the
identification of deeply sedated vs. non-sedated patients through the use of a recurrent neural

network, obtaining an average AUC of 0.8 [16,23].

When comparing the results of our study with similar ones, such as those by Nagaraj et al. or
Sun et al. [16,23], where the RASS was used as the chosen method to evaluate DoS, we can
observe that the results reported by these articles indicate a better discriminative ability than that
of our models [16,26]. However, upon closer analysis of these articles, we can see that the two
groups categorized according to the RASS were "Deeply sedated" (RASS = -4 and -5) vs
"Awake" (RASS = 0 and -1). This categorization of the RASS excludes RASS scores of -2 and -
3 from the assessment, which facilitates the predictive task of the models, as these are
consciousness states found at the extremes of the continuum. This characteristic may explain
why the previously mentioned studies show a better discriminative capacity than what we have

found.

However, the problem with conducting this type of categorization is that it diminishes the
clinical utility of prediction models, as these algorithms were created with the purpose of
assisting physicians in distinguishing between states of consciousness that are difficult to
discern clinically. Our model takes this clinical need into consideration, and therefore, when
categorizing, we include RASS scores of -2 and -3 within the category of "Not deeply sedated,"
as these are consciousness states that are more difficult to clinically differentiate from deep

sedation (RASS scores = -4 and -5).
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In our study, the individual feature that performed best in both models (SVM and RFC) was the
beta power - EEG2. Beta power also contributed the most to the predictions in the majority of
the models. The study by Weber et al. [22], reports that among the studied variables, the relative
power of the beta band had the best predictive capacity [22]. This may suggest that beta activity
in the EEG plays an important role in detecting sedation depth. The beta band frequency is
associated with alertness and active thinking [24]. Thus, it seems that the shift of activity from
this frequency to lower frequencies such as theta and delta (associated with states of decreased
consciousness such as sleep or sedation) could be providing the greatest predictive capacity to
our models. It is this shift that appears to be captured by features calculated from the beta band
frequency. The case of the general SVM model is different from the rest of the models, as this
model, instead of taking beta activity as the main predictor, gives primary importance to delta
activity and theta activity. This may explain why, in terms of predictive capacity per class, the
general SVM model is very good at predicting patients who are "deeply sedated" but poor at
identifying those categorized as "Not deeply sedated". Since, it seems to focus on the presence
of these frequencies, associated with deep sleep and low brain activity, to perform the
discriminatory task between classes rather than on the transition of activity between frequencies

[24].

Limitations

This investigation encountered certain limitations during its development. The first limitation
comes from the size of the database. The dataset consists of information collected from 21
patients, however, similar studies such as those by Nagaraj et al. or Weber et al. included more
than double the number of patients [16,22]. This makes the models more prone to overfitting,
limiting the generalization of the findings [25]. Additionally, another limitation was the
imbalance of our dataset, with more observations classified as "deeply sedated” than "not deeply
sedated." This reflects the frequent need for deep sedation in ICU procedures. To address this,

we applied an oversampling technique.
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CONCLUSION

This study assessed the predictive ability of 2 machine learning models on DoS in patients
admitted to the ICU. The algorithm that showed the best performance in differentiating between
deeply sedated patients and non-deeply sedated patients was the SVM with 3 variables (beta
power - EEG2, crest factor - EEG1, skewness - EEG2). The EEG feature with the best
individual predictive capacity was the beta power — EEG2. These models show promising
results, as they represent one of the first steps towards the development of a multimodal

framework.
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