
JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 1

Persistence-based Motif Discovery in Time Series
Thibaut Germain, Charles Truong, and Laurent Oudre

Abstract—Motif Discovery consists of finding repeated patterns
and locating their occurrences in a time series without prior
knowledge about their shape or location. Most state-of-the-art
algorithms rely on three core parameters: the number of motifs
to discover, the length of the motifs, and a similarity threshold
between motif occurrences. Setting these parameters is difficult
in practice and often results from a trial-and-error strategy.

In this paper, we propose a new algorithm that discovers
motifs of variable length given a single motif length and without
requiring a similarity threshold. At its core, the algorithm maps a
time series onto a graph, summarizes it with persistent homology
- a tool from topological data analysis - and identifies the
most relevant motifs from the graph summary. We propose
two versions of the algorithm, one requiring the number of
motifs to discover and another, adaptive, that infers the number
of motifs from the graph summary. Empirical evaluation on
9 labeled datasets, including 6 real-world datasets, shows that
both algorithm versions significantly outperform state-of-the-art
algorithms.

Index Terms—Time Series, Motif Discovery, Persistent Homol-
ogy, Topological Data Analysis

I. INTRODUCTION

T IME series are time-ordered sequences of real-valued
samples. They appear in numerous domains, and their

analysis has required developing specific data mining tools
[13], [11]. Among them, Motif Discovery algorithms search
for repeated patterns and locate their repetitions (also called
occurrences) within a time series without prior knowledge
about their shape or location. Motifs often provide insights into
the process generating the time series. For example, electro-
cardiograms (ECGs) commonly present a motif corresponding
to normal heartbeats. However, with patients suffering from
premature heart contractions, the ECGs present a second motif
specific to the malfunction [27] (see Figure 1-B). Motifs
also summarize long time series with a limited number of
patterns. They can be used in downstream analysis, such as
classification or anomaly detection, to reduce time complexity,
improve performances, or interpret results [43]. Motif Dis-
covery algorithms have been used in various domains such
as industry [40], [46], medicine [24], [41], and biology [21],
[12].

The mathematical definition of motif is not unique and
has led to algorithms based on different criteria such as
motif frequency [25], [37], [18] or similarity between motif
occurrences [48], [6], [47], [23]. Most of these algorithms rely
on three core parameters: the number of motifs to discover,
the length of motifs, and a similarity threshold between motif
occurrences. These parameters highlight the current limitations

T.Germain, C.Truong, and L.Oudre are with Université Paris Saclay,
Université Paris Cité, ENS Paris Saclay, CNRS, SSA, INSERM, Centre
Borelli, F-91190, Gif-sur-Yvette, France. Email: {thibaut.germain, ctruong,
laurent.oudre}@ens-paris-saclay.fr

Fig. 1. Time series representation and motif sets discovered by our algo-
rithm on an electrocardiogram (ECG) of a patient suffering from premature
ventricular contraction (PVC). (A) Persistence diagram: it is a simplified
representation of the ECG that shows the existence of two significant motif
sets (in green and red). (B) Electrocardiogram: pattern 0 (green) represents
heartbeats with PVC, and pattern 1 (red) represents normal heartbeats. Vertical
dashed lines on the ECG indicate the start location of patterns’ occurrences.

of state-of-the-art algorithms. Indeed, the number of motifs
to discover is imposed, and few guarantees exist whether
the number of motifs is overestimated or underestimated. As
well, the first algorithms supposed that all occurrences of all
motifs have the same length [25], [2], [18], but more recent
algorithms leverage this issue by searching for motifs within
a length range [39], [23]. Finally, the similarity threshold is
hard to determine as it depends on the variances between oc-
currences of each repeated pattern. In practice, this parameter
is set by trial-and-error [37].

With regard to the current limitations, we propose, in this
paper, a scalable algorithm that finds motifs of variable length
without requiring a similarity threshold. The algorithm is based
on a novel criterion: the persistence of motifs. Persistent
homology is a central tool in topological data analysis [5]
that efficiently tracks topological features at different spatial
resolutions. In our context, the algorithm tracks motifs for
all similarity thresholds and returns motifs that persist across
the largest ranges of scales. Intuitively, the persistence of
a motif simultaneously measures the similarity between its
occurrences and their dissimilarity with the rest of the time
series. The algorithm discovers motifs by mapping a time
series onto a graph and creating a summary of the graph from
which the most persistent motifs are identified. The algorithm
also provides an intuitive visual representation of the graph
summary, called persistence diagram, that informs about the
number of relevant repeated patterns in a time series (see
Figure 1-A). Taking advantage of this representation, we also
present an adaptive version of the algorithm that infers the
number of motifs to discover from the persistence diagram.
Finally, in our experimental evaluation, we show that:

• Both algorithms significantly outperform 6 state-of-the-
art algorithms on 9 labeled datasets, including 6 real-
world datasets.

• Hyperparameters have limited influence on the algo-
rithms’ performances.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 2

• Like state-of-the-art algorithms, the theoretical and em-
pirical time complexity is quadratic in the time series’
length.

The paper is organized as follows: In Section II, we review
the related work and detail our contributions. In Section III,
we present both algorithms. In Section IV, we describe the
experimental settings, and in Section V, we review the exper-
imental results.

II. BACKGROUND

In this section, we recall some definitions related to time
series and motif discovery, discuss related work and describe
the scientific positioning of our approach.

A. Definitions

First, we recall standard definitions in time series analysis.

Definition 1. (Time series) A time series of length n is a
time-ordered sequence S = [s1, . . . , sn] of n real-valued
coefficients.

Definition 2. (Subsequence) The subsequence of a time series
S ∈ Rn of length l and starting at index i ∈ [1, . . . , n− l+1]
is the sequence Sl

i = [si, . . . , si+l−1].

We denote by Sl the set of all subsequences of length l of
a time series S.

Definition 3. (Overlapping subsequences) Two subsequences
(Sl

i, S
l′

j) of a time series S ∈ Rn with i < j overlap if j ≤
i+ l.

We assume a distance function d : Rl × Rl 7→ R+ for the
following definitions.

Definition 4. (r-match) Given a threshold r > 0, the subse-
quences Sl

i and Sl
j of a time series S ∈ Rn are r-matching iff

d(Sl
i, S

l
j) < r.

Definition 5. (Distance profile) The distance profile between
C ∈ Rl and S ∈ Rn with l < n is the sequence
[d(C, Sl

1), . . . , d(C, S
l
n−l+1)].

Several algorithms consider the following definitions of
motif set:

Definition 6. (Spherical motif set, [25]) Given a threshold r >
0, the spherical motif set associated with a sequence C of
length l is the largest set of non-overlapping subsequences of
length l of S such that all subsequences are r-matching with
C. The sequence C is called the core element of the spherical
motif set.

Definition 7. (Bi-spherical motif set, [23]) Given a threshold
r > 0, the bi-spherical motif set associated with a pair
of sequences (C1, C2) of length l is the largest set of non-
overlapping subsequences of length l of S such that all subse-
quences are r-matching with either C1 or C2. The sequences
C1 and C2 are called the core elements of the bi-spherical
motif set.

(A): Frequency (B): Similarity (C): Persistence

Fig. 2. Three approaches for motif set discovery. Points represent subse-
quences and algorithms search for two motif sets. Predicted sets are in red and
blue, and points in gray are outliers. Cross points are subsequences and ball
centers. (A) Frequency based: with SetFinder [2], clusters are the largest sets
contained in non-overlapping balls of radius r centered on some subsequences.
(B) Similarity based: with VALMOD [23], clusters are sets included in
balls of radius r centered on the two most similar pairs of subsequences.
(C) Persistence based: with PEPA, clusters are formed incrementally by
similarity.

B. Related work

In the literature, motif discovery in time series refers to
a number of distinct problems that belong to two primary
categories:

• Motif Pair Discovery: Identifying the two most similar
non-overlapping subsequences in a time series.

• Motif Set Discovery: Identifying sets of subsequences
that encompass every occurrence of distinct repeated
patterns in a time series.

In this paper, we focus on the motif set discovery task.
For more information on motif pair discovery, we refer the
interested reader to the reviews [43], [37].

Concerning motif set discovery, current algorithms address
the problem in two different ways: frequency-based and
similarity-based, which are described in the following. As will
be seen, these approaches are disjoint and result in different
definitions of motif sets, which are illustrated in Figure 2.
Major algorithms for motif set discovery are summarized in
Table I.

1) Frequency-based algorithms: The frequency-based algo-
rithms aim at identifying sets of subsequences that represent
the most frequently repeated patterns. The first motif set
discovery algorithm, EMMA [25], follows this frequency-
based approach. Given the number of motifs to discover, a
fixed subsequence length, and a similarity threshold r > 0, the
algorithm iteratively finds the largest spherical motif set with
radius r > 0 and centered on a subsequence of length l of the
time series. Additionally, the motif sets are chosen such that
the spheres do not overlap, meaning that the core elements
are at least a distance of 2r from each other. For computa-
tional efficiency, subsequences are discretized using Symbolic
Aggregate approXimation (SAX) [22]. Subsequences with
similar symbols are grouped in sets. The sets are refined in
a post-processing step to obtain the final spherical motif sets
according to the Euclidean distance. Due to the discretization,
the EMMA algorithm provides approximate solutions. How-
ever, the more recent algorithm SetFinder [2], returns exact
solutions when working with the Euclidean distance or the
z-normalized Euclidean distance [8]. The algorithm computes
the spherical motif set of all subsequences and selects the
largest sets while preserving the non-overlapping constraint
between motif sets. Core elements of motif sets for EMMA

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 3

TABLE I
VL: VARIABLE LENGTH, NP: NUMBER OF PARAMETERS, COMPLEXITY:

WORST CASE TIME COMPLEXITY. n: TIME SERIES LENGTH, l:
SUBSEQUENCE LENGTH, k: NUMBER OF MOTIF’ OCCURRENCES, K :

NUMBER OF SUBSEQUENCE’ NEIGHBORS.

Approach Algorithm VL NP Complexity

Frequency

EMMA 5 O(ln2)
SetFinder 3 O(n3)

LearnMotifs 4 O(ln)
k-Motiflets 4 O(kn2 + nk2)

GrammarViz ✓ 5 O(ln2)

Similarity
STOMP 3 O(n2)

VALMOD ✓ 5 O((lmax − lmin)n
2)

MDLC ✓ 3 O(n3/lmin + (lmax − lmin)n
2)

Persistence PEPA ✓ 3 O(Kn2)
A-PEPA ✓ 2 O(Kn2)

and SetFinder are subsequences of a time series, making motif
sets sensitive to noise. LatentMotif [18] addresses this issue by
considering an optimization problem that maximizes the total
motif frequencies to learn the core elements of the spherical
motif sets. The non-overlapping constraint between spheres is
relaxed and encoded via a penalty function incorporated in the
optimization criteria. Nonetheless, there is no guarantee of an
optimal solution as the optimization problem is non-convex.

Previous algorithms have considered the subsequence length
as fixed and equal across motif sets, but a time series may
contain repeated patterns of variable length. To address this
issue, the Grammarviz algorithm [39] has been proposed. The
time series is initially discretized using SAX representation as
a long sequence of symbols. A grammar induction algorithm
Sequitur [31], identifies the longest and most repeated patterns
through a hierarchical structure of repeated patterns. While
time-efficient, the algorithm is sensitive to the discretization
step as repeated pattern identification relies on an exact match
of symbolic representations of subsequences. Several variants
of Grammarviz have been proposed to address this problem
[38], [14], [15].

A recent algorithm, k-motiflets [37], focuses on finding the
best motif set that contains k non-overlapping subsequences of
a fixed length with minimal pairwise distances. Compared to
previous algorithms, the similarity threshold is more intuitive
and set based on the number of occurrences. In addition,
the spheres are not centered on a subsequence but only
need to contain k subsequences. The authors also suggest
heuristics to determine appropriate numbers of occurrences
and subsequence lengths. However, this algorithm focuses on
one of the motif sets for a time series with multiple repeated
patterns.

Frequency-based algorithms rely on a similarity threshold to
determine the radius of spheres enclosing the motif sets. This
threshold can be difficult to set and is assumed to be the same
for all motif sets. When this assumption does not hold, the
motif sets of repeated patterns may contain false occurrences
or miss true occurrences.

2) Similarity-based algorithms: The similarity-based algo-
rithms aim at identifying sets of subsequences that represent
repeated patterns with minimal variability between occur-
rences, regardless of frequency. Roughly speaking, a pattern
that is repeated only once or twice is detected by similarity-

based methods but not by frequency-based methods.
An early similarity-based algorithm, MDLC [34], clusters

subsequences of variable length such that the description
length of the time series with the clusters is minimal. It is
a greedy bottom-up algorithm that, at each iteration, either
creates a cluster, adds a subsequence to a cluster, or merges
two clusters. The choice of action is based on the number of
bits saved. Unlike the more recent algorithms, STOMP [48],
[3] and VALMOD [23], MDLC does not require the number
of clusters as input; it stops clustering when the time series
description length cannot be improved.

STOMP and VALMOD rely on the matrix profile [45], a
structure that stores both the index and the distance to the
nearest non-overlapping neighbor of all fixed-length subse-
quences of a time series. Given the number of motifs, a fixed
subsequence length, and a similarity ratio λ > 0, the STOMP
algorithm iteratively finds spherical motif sets whose core
element corresponds to the left member of the most similar
non-overlapping subsequence pair. STOMP also maintains the
non-overlapping constraint between all subsequences of all
motif sets. To that end, a mask containing all subsequences
that overlap with previously selected motif sets is maintained
across iterations. The most similar pairs are found with the
matrix profile, and the associated spherical motif sets with an
efficient algorithm to compute arbitrary distance profiles [29].
The second algorithm, VALMOD, differs from STOMP in two
ways: it searches for motif sets with subsequences of variable
length within a range [lmin, . . . , lmax] and it considers bi-
spherical motif sets whose core elements are the most similar
subsequence pairs. More precisely, the subsequences have the
same length in each motif set, but the length can differ from
one set to another. The z-normalized Euclidean distance is
divided by the subsequence length to compare subsequences
of different lengths. The matrix profile also stores the length
of the nearest non-overlapping subsequence. Finally, motif
sets are found using the same resolution scheme as STOMP
algorithm.

In contrast to frequency-based algorithms, similarity-based
algorithms assume that the radius of the balls in which
motif sets are contained differs for each set. The radius is
proportional to the z-normalized Euclidean distance between
the subsequences of the most similar pair associated with the
motif set. The proportionality is defined by a similarity ratio
λ > 0. With such a definition, motif sets are sensitive to the
nearest neighbor pairs, and small perturbations can lead to
different sets.

C. Contributions and scientific positioning

All presented algorithms consider motif sets as collections
of subsequences contained in balls whose radius is determined
by a similarity threshold. However, setting this parameter
is not straightforward as it requires prior knowledge about
the similarity between subsequences of repeated patterns. In
practice, the threshold is often set by trial and error [37], but
this strategy is not tractable for large time series.

Our algorithm, called PersistentPattern (PEPA), takes a
different approach. It creates motif sets without any prior

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 4

1 2.a

3 2.b

Fig. 3. (1) From time series to graph: Nodes are subsequences, and edges depend on the distance between them. (2) Graph clustering from persistent
homology. (a) From graph to persistence diagram: The graph is summarised by a diagram where each point is a connected subgraph, and its location
depends on edge weight. (b) From persistence diagram to clusters: Subgraphs associated with motif sets are in the upper left corner. They can be isolated
with two thresholds: the red lines. There are two clusters, red/green; the bi-colored points are subgraphs included in the subgraphs of cluster, but their
membership cannot be determined from the persistence diagram. The gray points are subgraphs associated with irrelevant parts of the time series. (3) From
clusters to motif sets: time-adjacent subsequences are merged in each cluster.

knowledge about the similarity between subsequences. Indeed,
the algorithm generates motif sets for all possible similarity
threshold values, ranging from 0 to +∞. Some motif sets per-
sist across multiple threshold values, and the algorithm selects
motif sets with the largest persistence range. In addition, the
algorithm does not impose a spherical constraint on the motif
sets. Instead, the subsequences are incrementally grouped to
form the motif sets based on their similarity. It allows the motif
sets to adapt to the local shape of the neighborhood of the
subsequences. Ultimately, the algorithm searches for repeated
patterns of variable length that are significantly different from
each other regardless of their frequency. This approach is
illustrated in Figure 2.

All presented algorithms also require the number of motif
sets as a parameter. Although difficult to define without
prior knowledge, our persistence-based approach provides a
simplified representation of a time series from which it is
possible to infer the number of motif sets. Thus, we will
also present an adaptive version of the main algorithm (A-
PEPA) that automatically infers the number of motif sets to
be discovered.

III. METHOD

Our approach is based on two main ingredients: a graph that
encodes the structural relationships between all subsequences
in the time series, and the use of persistent homology (a tool
derived from topological data analysis) to isolate and identify
the motif sets. The algorithm PEPA can be broken down into
three steps illustrated in Figure 3:

1) From time series to graph: Transforming a time series
into a graph where nodes represent subsequences and
edges are weighted with the distance between subse-
quences. The graph is an adaptation of the k-nearest
neighbor graph, which incorporates similarity and time
dependence of subsequences.

2) Graph clustering through persistent homology: Iden-
tifying clusters representing motif sets and separating
them from the isolated nodes of the graph representing
irrelevant parts of the time series.

Algorithm 1 ComputeGraph
Require: S a time series, l the subsequence length, K the

number of neighbor
1: n← Length(S), Graph1← (), Graph2← ()
2: DistanceInitialization(S, l)
3: for i=1,. . . ,n-l+1 do
4: D ← ComputeDistanceProfile(Sl

i, S)
5: D[max(i− l + 1, 0),min(i+ l − 1, n)]← +∞
6: for k=1,. . . ,K do:
7: j ← argmin(D)
8: Graph1.append((i, j,D[j]))
9: D[max(j − l + 1, 0),min(j + l − 1, n)]← +∞

10: if k==1 then
11: if i==1 then
12: dprev ← D[j]
13: else
14: dmax ← max(dprev, D[j])
15: Graph2.append((i, i+ 1, dmax))
16: dprev ← D[j]
17: Graph← Combined(Graph1, Graph2)
18: return Graph

3) From clusters to motif sets: Merging temporally adja-
cent subsequences in each cluster to form the variable
length motif sets.

A. From time series to graph

This section describes the transformation of a time series
S ∈ Rn into an undirected weighted graph GS . For now,
assume a distance d(·, ·) between subsequences, which will
be described later.

Definition 8 (Undirected weighted graph). An undirected
weighted graph G = (V,E) consists of a set of vertices
(also called nodes) V and a set of weighted edges E ⊂
{(x, y, wxy) | (x, y) ∈ V × V, wxy ∈ R+}, where wxy is
the weight of the edge between nodes x and y.

In GS , the set of nodes is composed of all subsequences
of length l of S (denoted as Sl) and the edges between

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 5

subsequences are defined according to two criteria:
• Similarity: each subsequence Sl

i is connected to its K
most similar non-overlapping subsequences.

• Time: it connects with its time adjacent subsequences
(Sl

i−1, S
l
i+1).

More formally, let Nk
i denote the k-th nearest non-

overlapping neighbor of the subsequence Sl
i and dki the

distance between subsequences Sl
i and Nk

i . The similarity
edges are defined by

E1 =

n−l+1⋃
i=1

{(
Sl
i, N

k
i , d

k
i

)
| k = 1, . . . ,K

}
, (1)

and the time edges, by

E2 =

n−l⋃
i=1

{(Sl
i, S

l
i+1,max

(
d1i , d

1
i+1

)
}. (2)

The final graph GS is defined as (Sl, E1∪E2). Intuitively, low-
weight edges connect similar subsequences, while high-weight
edges connect less similar ones. The graph (Sl, E1) is a variant
of the well-known k-nearest neighbor graph, as it connects
each subsequence to its k-nearest non-overlapping neighbors.
In practice, this graph can split a single motif set into several
clusters as subsequences are considered independent and they
are not compared with time-adjacent subsequences. In such
a situation, the number of discovered motif sets is over-
estimated, and a non-trivial post-processing is needed to merge
similar clusters. We introduce the time edges set E2 to prevent
this phenomenon: in our graph, GS , a subsequence is always
connected to the subsequences just before Sl

i−1 and after Sl
i+1.

As a result, our method assigns overlapping subsequences that
represent the same repeated pattern in a single cluster, which
limits the over-clustering effect.

Proposition 1. The graph GS associated with the time series
S ∈ Rn is connected.

Proof. The graph (Sl, E2) is a path graph; thus, it is con-
nected, and by the union of two graphs, GS is connected.

The construction of the graph GS relies on a distance
between time series. To that end, we introduce a novel dis-
tance, which has several advantageous properties, particularly
robustness to Linear Trends (LT). It is called the γ-rectified
LT-normalized distance. It is based on the LT-normalized
(Euclidean) distance which is an extension of the recently
proposed LT-normalized (Euclidean) distance [16], and is
defined as follows.

Definition 9 (LT-normalized Euclidean distance). The LT-
normalized (Euclidean) distance between x ∈ Rw and y ∈ Rw

is:

dLT (x, y) =

∥∥∥∥∥ x− (αxt+ βx1)

∥x− (αxt+ βx1)∥
− y − (αyt+ βy1)

∥y − (αyt+ βy1)∥

∥∥∥∥∥
where t = (0, . . . , w − 1), 1 = (1, . . . , 1) ∈ Rw and (αx, βx)
are solutions of the linear regression problem:

argmin
(a,b)∈R2

∥x− (at+ b1)∥2 (3)

(A): Amplitude scaling
orignal
shifted

(B): Offset shift

(C): Linear trend

-2 0 2
u

0

1

2

f
(u

)

(D): -rectified distance
|u|

: 0.5
: 1
: 10

Fig. 4. Shape deformations of time series due to (A) Amplitude, (B) Offset,
(C) Linear shifts. In green the original time series and in red the shifted time
series. The dot lines represent the deformations. (D) γ-rectified distance: The
blue line represents distance behavior with the absolute value on the range
of [−2, 2]. The other colors depict γ-rectified distances. As γ increases, the
distance stays low on smaller neighborhoods centered on 0 but tends towards
2 outside the neighborhood.

The LT-normalized distance generalizes the Z-normalized
distance [44] by removing the linear trend of subsequences
and scaling them to unit norm. Thanks to its invariance to
offset, linear, and amplitude shifts (see Figure 4-(A-C)), the
LT-normalized distance is robust to shape deformations caused
by a trend. Also, distances between noisy linear sequences
remain high, and distances between noisy occurrences of a
complex shape are low. Consequently, our approach, PEPA,
and its adaptive version, A-PEPA, focus on repeated patterns
that are not linear up to any offset, linear, or amplitude shifts.

Intuitively, the distance should be able to distinguish be-
tween subsequences that belong to the same repeated pattern
and those that do not. To enforce this behavior, we introduce
the γ-rectified LT-normalized Euclidean distance, which pro-
duces a soft polarization of the distance values at the limits
of the interval [0, 2].

Definition 10. Given γ > 0, for any x ∈ Rw and y ∈ Rw, the
γ-rectified LT-normalized Euclidean distance, denoted dγ(·, ·),
is defined by

dγ(x, y) = fγ (dLT (x, y)) , fγ(u) = 2

√
tanh(γu2)

tanh(4γ)
(4)

where γ > 0 controls the polarization.

Figure 4-D shows the influence of the parameter γ on the
function fγ . For all experiments, the value of γ is identical
and fixed to 10.

Algorithm 1 describes the computation of the graph with the
γ-rectified LT-normalized Euclidean distance. The algorithm
conjointly computes the edges by looping over the distance
profile of all subsequences. Thanks to the recursion property
of the LT-normalized distance described in [16], each distance
profile is computed in O(n), resulting in a time complexity
of O(Kn2) for computing the graph. In addition, parallel and
GPU computing of the graph is also feasible [16].

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 6

2
3

12

3

10

15

1

3

1

3

15

2

15

0
1

2

3
4

5
6

7

8

(A): Graph

1

1
3

4
5

(B): w = 1

2

1

1

2

0
1

3
4

5
6

(C): w = 2

2

33

1

3

1

3

2

0
1

2

3
4

5
6

(D): w = 3

2

33

10
1

3

1

3

2

0
1

2

3
4

5
6

7

(E): w = 10

2

3

12

3

10

1

3

1

3

2

0
1

2

3
4

5
6

7

8

(F): w = 12

2
3

12

3

10

15

1

3

1

3

15

2

15

0
1

2

3
4

5
6

7

8

(G): w = 15

0 3 6 9 12 15 18

(H): Persistent Diagram

0 3 6 9 12 15 18

(I): Thresholds

2

3

12

3

10

15

1

3

1

3

15

2

15

0
1

2

3
4

5
6

7

8

(J): Clusters

Fig. 5. Illustration of the graph clustering algorithm through persistent homology. (A) The graph to cluster: The number on the nodes is their id, and the
weights are the distance between nodes. (B)-(G) The NNVR filtration milestones of the graph: The edges are added in order of increasing weight. (H) The
corresponding persistence diagram: The births and deaths of connected subgraphs traced along the filtration are summarized with a 2D scatterplot where
births are on the x-axis and deaths are on the y-axis. (I) The birth and persistence thresholds: The red and green points in the upper-left corner indicate
two clusters. The birth threshold (vertical red line) and the persistence threshold (off-diagonal red line) are set to isolate this region. The bi-colored points
are subparts of the cluster, but their membership cannot be determined from the persistence diagram. The gray points are associated with irrelevant parts of
the time series. (J) Clustering result: Clusters are in red and green; irrelevant nodes are in gray.

B. Graph clustering through persistent homology

The graph GS is such that overlapping subsequences from
the same motif set are connected with edges of low weight.
Therefore, motif sets can be retrieved by searching for con-
nected subgraphs of GS with edges of low weight. Persistent
homology is well-suited for identifying and isolating such
subgraphs. Persistent homology is a central tool in the field
of topological data analysis [5], used to track the persistence
of topological features of data at multiple scales with respect
to a scaling parameter. To summarize the persistence of these
features, a 2D scatter plot known as a Persistence Diagram is
created, allowing for the identification of noteworthy topologi-
cal features. For a thorough description of persistent homology
and its application in various fields, readers can refer to [10],
[33].

In our context, the topological features are the connected
subgraphs of GS , and the scaling parameter is the edge weight.
The graph clustering algorithm consists of three steps:

1) Computing the persistence of connected subgraphs
2) Identifying connected subgraphs related to motif sets

from the persistence diagram
3) Forming clusters from the chosen connected subgraphs

1) Computing the persistence of connected subgraphs: The
persistence of connected subgraphs of GS is computed through
a sequence of nested graphs. The sequence starts with the
empty graph and adds edges one by one, in order of increasing
weight until it reaches the final graph. In persistent homology,
such sequence is called a filtration. There are several types
of filtration, and we have implemented the Nearest Neighbor
Vietoris-Rips Filtration (NNVR) [4].

Definition 11 (Nearest Neighbor Vietoris-Rips Filtration). Let
GS = (V,E) be the graph of a time series S and (wi)i=1,...,m

the edge weights in ascending order. The nearest neighbor
Vietoris-Rips filtration is the sequence of nested graphs:

∅ = Gw1 ⊊ Gw2 ⊊ . . . ⊊ Gwm−1 ⊊ Gwm = GS

where ∅ is the empty graph and Gwi = (Vwi , Ewi) such that:

Vwi
=

{
Sx ∈ V | min

(Sx,Sy,wxy)∈E
wxy ≤ wi

}
and

Ewi
= {(Sx, Sy, wx,y) ∈ E | wxy ≤ wi}

By convention, when adding an edge in the filtration, the
nodes it connects are added first if they are not already in the
filtration, then the edge itself is added. If both nodes need to
be added, one is arbitrarily added before the other. Alongside
the filtration, we keep track of the birth and death dates of
connected subgraphs:

• Birth: The birth of a connected subgraph occurs when a
node is added to the graph; its birth date is equal to the
weight of the associated edge.

• Death: A connected subgraph dies when an edge con-
nects it to an older connected subgraph. Its death date is
equal to the weight of the connecting edge.

By definition, each subsequence is the seed node of a
connected subgraph, so they all have a birth date equal to
the distance to their nearest non-overlapping neighbors. Since
the graph of a time series GS is connected, one connected
subgraph never dies; its death date is set to +∞. We denote
(bi, di)i∈I as the set of birth and death dates of all connected
subgraphs traced by the filtration. The persistence of the
ist connected subgraph corresponds to its lifetime: di−bi. The
connected subgraphs are summarized with a 2D-scatterplot
called Persistence Diagram, where births are on the x-axis,
and deaths are on the y-axis. Each point is counted with

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 7

Algorithm 2 ComputePersistence
Require: G = (i, j, wij)(i,j)∈I a graph, I is sorted by weight.

1: P ← {} Parent dictionary, B ← {} Birth dictionary, D ←
{} Death dictionary, MST ← () Minimum spanning tree

2: for (i, j) ∈ I do
3: P1 ← FindParent(i)
4: if P1 is empty then
5: P[i]← i, B[i]← wij

6: P2 ← FindParent(j)
7: if P2 is empty then
8: P[j]← j, B[j]← wij

9: if P1 ̸= P2 then
10: if B[P1] < B[P2] then
11: P[P2]← P1, D[P2]← wij

12: else
13: P[P1]← P2, D[P1]← wij

14: MST.append((i, j, wij))
15: return B,D,MST

multiplicity since several connected subgraphs can have the
same birth and death dates.

Figure 5 shows milestones of an NNVR filtration on a graph
(Figure 5-A to Figure 5-G) and the corresponding persistence
diagram (H). When weight w = 1, node 3 has killed nodes 4
and 5, so their persistence is zero. With weight w = 2, node 0
kills node 1 to form a second independent connected subgraph.
Then, nodes 6, 2, 7, and 8 are added and immediately killed
for weights w = 2, 3, 10, and 12. At weight w = 15, the
subgraph associated with node 0 is killed by that of node 3
and the graph is complete. The highest point (in red) on the
persistence diagram corresponds to the subgraph that never
dies.

The birth and death of connected subgraphs are tracked by
maintaining a union-find data structure throughout the filtra-
tion. The algorithm is equivalent to the Kruskall’s algorithm
for computing the minimum spanning tree (MST). Algorithm 2
describes the procedure for computing the connected sub-
graphs persistence from a graph whose edges are ordered
by increasing weight. The FindParent command follows the
chain of parent pointers from a query node until a root node.
This root node represents the connected subgraph to which
the query node belongs. The algorithm also stores the MST
to efficiently retrieve the clusters later on.

2) Identifying connected subgraphs related to motif sets
from the persistence diagram: As shown in Figure 6-A, the
persistence diagram can be divided into three interpretable
regions:

1) Top-left corner: Points represent connected subgraphs
associated with motif sets.

2) Lower-left corner: Points represent connected subgraphs
associated with minor variations of the motif sets.

3) Right side: Points represent connected subgraphs asso-
ciated with irrelevant parts of the time series.

On one hand, the graph associated with a time series is
constructed so that non-repeating or noisy linear subsequences
are far from any other subsequence. Thus, connected sub-
graphs composed of these subsequences have a late birth and

birth

de
at

h

Irre
lev

an
t

Su
b-M

oti
fs

Motifs

Pe
rsi

ste
nt

thr
esh

old
 (p cu

t)

Bi
rth

 th
re

sh
ol

d
(b

cu
t)

(A): Diagram partition

p cu
t: 1

st
ga

p

p cu
t: 2

nd
 ga

p

(B): pcut gap heuristic

Fig. 6. (A) Diagram partition: Top-left corner, points associated with motif
sets. Lower-left corner, points associated with subparts of motifs sets. Right
side, irrelevant parts of the time series. (B) Persistence threshold heuristic:
The orange line is the persistence threshold of the largest gap, and the green
line is the threshold of the second largest gap.

are located in the right part of the persistence diagram. On
the other hand, subsequences that overlap any occurrence of
a repeated pattern are close to each other and far from all
other subsequences. The connected subgraphs associated with
repeated patterns have early births and late deaths. They are lo-
cated in the top-left corner of the persistence diagram. Finally,
the lower-right corner corresponds to connected subgraphs
associated with minor variations of repeated patterns.

The region associated with motif sets can be isolated
with a vertical line and an off-diagonal line as presented in
Figure 6-A. The vertical line corresponds to a threshold on
birth dates (bcut). It defines the difference between irrelevant
subsequences and subsequences belonging to motif sets. This
threshold is computed with Otsu’s method [32], an algorithm
introduced in image processing to transform a grayscale image
into a black-and-white image. The off-diagonal line corre-
sponds to a threshold on the persistence (pcut). Connected
subgraphs associated with motif sets have a persistence greater
than this threshold. To discover N motif sets, the persistence
threshold is set to the average between the N -th and (N +1)-
th most persistent connected subgraphs whose birth dates are
less than the birth threshold.

3) Create clusters from the selected connected subgraphs:
The clusters are computed by maintaining a union-find data
structure throughout the filtration of the minimum spanning
tree (MST) of GS . The MST is computed in the first clustering
step (Section III-B1), and it is the smallest graph that contains
all information about the birth and the death of all the con-
nected subgraphs traced by the filtration of GS . The algorithm
that computes the clusters is similar to the ComputePersistence
algorithm (Algorithm 2) with two modifications. Specifically,
the edges connecting two connected subgraphs with persis-
tence higher than the persistence threshold are not considered
when going through the filtration. This is done by changing the
condition of the if-loop Line 9 to (P1 ̸= P2)+((wij−B[P1] ≤
pcut)∗(wij−B[P2] ≤ pcut)). Second, after the main for-loop,
the parent dictionary is updated, and the nodes whose birth
date exceeds the birth threshold are removed. Ultimately, the
algorithm returns N clusters from the parent dictionary, each
composed of subsequences of length l of S.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 8

Algorithm 3 ComputeMotifSets
Require: S time series, I indexes of subsequences in clusters,

C cluster dictionary, B birth dictionary, l subse-
quence length.

1: O ← {} Occurrence dictionary, IDX ← () Index to keep,
M ← () Motif sets, p idx ← I[0] − 1 Previous index,
o id← 1 Occurrence ID

2: for i ∈ sort(I) do
3: if (i− 1 ̸= p idx) or (C[i] ̸= C[p idx]) then
4: o id← o id+ 1
5: O[i]← o id
6: I ′ ← BirthOrderedIndex(I,B) ▷ order the index list I

by increasing order of birth date.
7: for i ∈ I ′ do
8: IndexToKeep = True
9: J ← OverlappingIndex(i, IDX, l) ▷ select index in

IDX overlapping with i.
10: if J is not empty then
11: for j ∈ J do
12: if O[i] ̸= O[j] then
13: IndexToKeep = False
14: break
15: if IndexToKeep is True then
16: IDX.append(i)
17: M ←MotifSetsFromSubsequences(S, IDX, C, l)
18: return M

C. From clusters to motif sets
Recall that a motif set is a set of non-overlapping subse-

quences of possibly varying length where elements of each
motif should represent occurrences of the same repeated pat-
tern. Our clustering approach produces clusters of overlapping
subsequences, which must be refined to create a motif set.
In particular, we merge specific overlapping subsequences
to form a single one representing an occurrence. To that
end, subsequences with the latest birth date are removed
until the non-overlapping constraint is satisfied when merging
subsequences into a single one per occurrence. The refined
clustering is then a motif set.

Algorithm 3 shows the procedure for computing the motif
sets from clusters. The first for-loop computes the occur-
rence membership of all subsequences. Two subsequences
belong to the occurrence if they are in the same cluster
like all temporally consecutive subsequences between them.
The second for-loop refines the clusters to enforce the non-
overlapping constraint. If a subsequence overlaps with at least
one subsequence of another occurrence with an earlier birth
date, it is removed from its cluster. Finally, the motif sets are
formed by merging the temporally consecutive subsequences
in each cluster.

D. Adaptive algorithm: A-PEPA
In this section, we present an adaptive version of the PEPA

algorithm called A-PEPA, which infers the number of motif
sets from the persistence diagram. The only difference between
PEPA and A-PEPA is the computation of the persistence
threshold.

Algorithm 4 AdaptivePersistenceThreshold
Require: B birth dictionary, D death dictionary, bcut birth

threshold, M number of gap
1: P ← () persistence list, pcut ← 0 persistence threshold
2: for i = 1, . . . , n− l + 1 do
3: if B[i] ≤ bcut then
4: P.append(D[i]− B[i])
5: P ← Sort(P)
6: for i = 1, . . . ,M do
7: j ← argmax(P), pcut ← (P [j + 1]− P [j])/2
8: P ← P [0 : j + 1]
9: return pcut

The PEPA algorithm isolates motif sets with a birth thresh-
old and a persistence threshold based on the number of motif
sets to discover. The adaptive version of the algorithm, A-
PEPA, infers the persistence threshold by looking at successive
gaps in persistence as shown in Figure 6-B. A large gap
indicates that repeated patterns (points above the gap) signifi-
cantly differ from all other patterns in the time series (points
below the gap). Depending on the application, the second or
higher-order gap may be more interesting than the largest;
some variations of more persistent repeated patterns should
be considered as different motif sets. Algorithm 4 shows the
procedure for computing the adaptive persistence threshold.
In practice, we set the adaptive persistence threshold to the
second-largest persistence gap.

E. Time complexity and parameter tuning

The time complexity of PEPA and A-PEPA is in O(Kn2),
where n is the length of the time series, and K is the number
of nearest neighbors.

Indeed, the graph GS is computed in O(Kn2) by following
the procedure of the STOMP algorithm [48]. The graph
clustering algorithm is in O(Kn log(Kn)) in the worst case
because the algorithm 2 requires maintaining a union-find
data structure over GS which has Kn edges. The computa-
tion of both thresholds is in O(n), and the algorithm that
computes the clusters from the selected connected subgraphs
is in O(n log(n)) since it requires maintaining a union-find
data structure of the MST of GS which has n edges. The
algorithm 3 is in O(n log(n)) in the worst case because it
requires sorting the subsequences by increasing order of birth
dates. The bottleneck of PEPA and A-PEPA is the computation
of the graph in O(Kn2).

F. Parameter tuning

The PEPA algorithm has three parameters:
• The number of motif sets to discover: N ∈ N∗. Note that

this number is empirically estimated when using A-PEPA.
• Two parameters linked to the graph construction: the

length of subsequences l ∈ N∗ and the number of nearest
neighbors K ∈ N∗.

Like other motif discovery algorithms, setting the number of
motif N depends on expert knowledge. However, with PEPA,

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 9

this number can be deducted through the persistence diagram,
Figure 6, and the motifs sets can be updated in O(n log(n)).

Empirical results (Section V-C2) shows that PEPA and A-
PEPA are not sensitive to the number of neighbors K when it
exceeds 5 (the relative error to the optimal is less than 1%). As
this parameter influences the algorithms’ computational time,
we advise setting it to 5.

Experiment on the influence of the window length l (Sec-
tion V-C1) shows that PEPA and A-PEPA retrieve motifs
whose length are at most twice the window length. In practice,
we recommend setting it to the length of the smallest motif.

IV. EXPERIMENTAL SETTINGS

This section describes the datasets, performances metrics
and implementation details we used for our experimental
evaluation. For reproducibility, the source code and all datasets
are available on our webpage [1].

A. Datasets

We conducted our experiments on 9 labeled datasets con-
structed from real and synthetic time series. Table II presents
the main characteristics of the datasets for the motif set
discovery problem. The datasets are described in more detail
in the following paragraphs.

1) Synthetic datasets: We have generated datasets based on
three scenarios of increasing complexity:

(S-1) single: There is 1 pattern of length 100 that repeats 50
times.

(S-2) fixed: There are 5 patterns of length 100. For each pattern,
the number of occurrences is sampled uniformly between
2 and 10.

(S-3) variable: There are 5 patterns with length uniformly
sampled between 100 and 200. For each pattern, the
number of occurrences is sampled uniformly between 2
and 10.

All time series are generated using the same protocol:
occurrences of the N repeated patterns are randomly placed
on top of a random walk, and Gaussian noise is added to the
resulting time series. The amplitude of the random walk (resp.
Gaussian noise) is set to 0.2 (resp. 0.1). The interval between
two consecutive occurrences is also uniformly sampled over
[10, 90] for the single/fixed scenarios and [20, 180] for the
variable-length scenario. Given a length of l0 ∈ N∗ and a
fundamental frequency of 4Hz, a pattern is generated as the
sum of the sine function of the l0 first harmonics, with the
phases and the amplitudes are uniformly sampled over [−π, π]
and [−1, 1].

2) Real datasets: We used four real datasets already used
in the litterature:

(R-1) mitdb-1 [17], [27]: The MIT-BIH Arrhythmia Database
contains 48 half-hour recordings of two-channel ambu-
latory electrocardiograms (ECGs) sampled at 360Hz.
Cardiologists annotated the heartbeats according to 19
categories1. We divided all recordings into time series of
1 minute and kept the first channel. We selected time

1https://archive.physionet.org/physiobank/annotations.shtml

TABLE II
N NUMBER OF REPEATED PATTERNS, IF < k, THERE ARE AT MOST k

PATTERNS. µl AVERAGE PATTERN LENGTH, σl STANDARD DEVIATION OF
PATTERN LENGTH, MIN/MAX MINIMUM/MAXIMUM PATTERN LENGTH, n

TIME SERIES LENGTH, # NUMBER OF TIME SERIES.

Type Name N µl σl min/max n #

real (R-1) mitdb-1 1 320 60 215/461 20k 100
(R-2) mitdb-2 < 4 280 70 69/496 20k 100
(R-3) mitdb800 < 4 95 25 24/165 20k 100
(R-4) ptt-ppg 1 325 45 201/461 20k 100
(R-5) refit < 3 100 20 47/143 20k 100
(R-6) arm-coda 5 525 105 272/886 8k 64

synthetic (S-1) single 1 100 0 100/100 8k 100
(S-2) fixed 5 100 0 100/100 3k 100
(S-3) variable 5 150 30 100/200 4k 100

series of healthy subjects (id: 100, 101, 103, 117, 122,
according to [35]) that contains only normal heartbeats,
and randomly selected 100 time series.

(R-2) mitdb-2: We randomly selected 100 one-minute time
series in from MIT-BIH dataset. This dataset is more
challenging than the previous one as it contains unhealthy
heartbeats. Each time series has 1 to 4 patterns, each with
several occurrences.

(R-3) mitdb800 [19]: This database includes 78 half-hour ECG
recordings sampled at 120Hz with heartbeat annotations
(19 categories). We divide all recordings into three-
minute time series and keep the first channel. We ran-
domly select 100 time series, and the number of repeated
patterns varied between 1 and 4.

(R-4) ptt-ppg [26]: Pule-Transit-Time PPG dataset consists
of time series recorded with multiple sensors (sampled
at 500Hz) from healthy subjects performing physical
activities. Heartbeats are also annotated. We randomly
select a hundred 40-second long signals from the pho-
toplethysmogram (PPG) first channel during the “run”
activity.

(R-5) refit [30]: The original dataset provides aggregate and
individual appliance load curves at 8-second sampling
intervals from 20 houses in the United Kingdom, recorded
over two years. We selected 10 houses and aggregated
recordings of the appliances available: dishwasher, food
mixer, washing machine, and tumble dryer. The record-
ings were down-sampled to 32-second intervals and di-
vided into time series of one week. We kept 10 time
series for each house in which the appliances were not
used simultaneously. This resulted in a dataset of 100
univariate time series with a maximum of 3 motif sets.

(R-6) arm-coda [7] is a dataset of 240 multivariate time series
collected using 34 Cartesian Optoelectronic Dynamic
Anthropometers (CODA) placed on the upper limbs of 16
healthy subjects, each of whom performed 15 predefined
movements such as raising their arms or combing their
hair. Each sensor records its position in 3D space. To
construct the dataset, we kept the left (resp. right) forearm
sensor of id 29 (resp. 20) and 5 of the predefined
movements: 0,1,4,6,8 (resp. 0,1,4,5,7). We selected the
first two occurrences of all movements in the x and y
dimensions. Then, the occurrences of the 5 movements

https://archive.physionet.org/physiobank/annotations.shtml

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 10

were randomly placed along the time axis for each
subject, sensor, and dimension. The distance between
two consecutive occurrences is sampled uniformly over
[50, 450]. A Gaussian noise with a signal-to-noise ratio
of 0.01 was added to all time series. This resulted in a
dataset of 64 univariate time series.

B. Performance metrics

Motif discovery in time series is an unsupervised event
detection task. Like other time series event-based tasks, we
evaluate performance with precision, recall, and f1-score
metrics [42]. However, compared to supervised tasks, the
computation of these metrics requires the additional step of
pairing real and predicted motif sets. This step is a two-level
assignment problem: predicted motif sets must be assigned to
real motif sets, and predicted occurrences must be assigned
to real ones between paired motif sets. The optimal pairings
maximize the total overlapping length between real and pre-
dicted motif sets, and they can be efficiently computed with
the Hungarian matching algorithm [20], [36]. The precision,
recall, and f1-score computation rely on the optimal pairings
and a threshold τ ∈ [0, 1] that controls the overlapping ratio.
Any metric’s score is the average of the individual metric
score between paired motif sets; the averaging can be macro
or weighted. For precision (resp. recall), a motif occurrence is
counted as a true positive if the ratio between the overlap
length and the predicted (resp. real) occurrence length is
greater than the threshold τ . This threshold is set to 50% for
all experiments. The resolution of the motif sets assignment
problem and the metrics’ computation are well-detailed in
supplementary materials.

We also rank methods according to the f1-score and com-
pute critical difference diagrams [9]. The associated test sig-
nificance level is set to 0.05. We use Friedman’s test to reject
the null hypothesis, and we compute the critical differences
using Nemenyi post-hoc test.

C. State-of-the-art methods and implementation details

The evaluation was performed on a server with In-
tel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz, and
250 GB of RAM. We compared PEPA and A-PEPA
with SetFinder (SF)[2], LatentMotif (LM)[18], Grammar-
viz (GM)[38], MDLC (MC)[34], STOMP (SM)[48], and
VALMOD (VM)[23]. For fairness, we implemented all of the
algorithms in Python except Grammarviz. Indeed, they all
rely on a fast computation of the distance profiles, and we
implemented a common structure based on the algorithms [48].

VALMOD algorithm efficiently computes all matrix profiles
within a subsequence length range thanks to STOMP algo-
rithm and a pruning strategy. Therefore, STOMP algorithm
provides a lower bound of VALMOD scalability performances.
For simplicity, we implemented a greedy version of VALMOD
algorithm that does not consider the pruning strategy. Predicted
motif sets remain identical, and we use STOMP algorithm as
a lower bound for VALMOD scalability performance.

For Grammarviz, we used an implementation in JAVA
provided by the authors [38].

V. EXPERIMENTAL EVALUATION

Our experimental evaluation has four components:

1) A qualitative evaluation on physiological signals, (in
Section V-A).

2) A quantitative comparison of PEPA and A-PEPA with
5 state-of-the-art algorithms on several labeled real and
synthetic datasets (in Section V-B).

3) Several experiments to show the influence of the main pa-
rameters of PEPA and A-PEPA: the subsequence length,
the number of nearest neighbors, and the persistence
threshold heuristic for A-PEPA (in Section V-C).

4) A scalability experiment (in Section V-D).

A. Qualitative evaluation

In this section, we illustrate the visual interpretability of our
algorithm and its ability to detect meaningful patterns in two
types of physiological data.

ECG data. Electrocardiograms of patients suffering from
premature ventricular contractions (PVCs) contain a typical
pattern for normal heartbeats and another typical pattern for
heartbeats with PVCs. Several ECGs in the mitdb800 database
correspond to patients suffering from PVCs, and we ran the
adaptive algorithm on a 16-second portion of one of them.
We set the window length to 500ms and the number of
neighbors to 5. The persistence diagram, Figure 7-A (left),
suggests that two motif sets have been properly isolated with
the birth and persistence thresholds. Figure 7-A (right) shows
the motif sets; the first set corresponds to heartbeats with PVC,
and the second corresponds to normal heartbeats. Figure 7-
A (middle) shows that all heartbeats are detected and well
classified except one normal heartbeat. Illustrations of motifs
sets discovered with other motif discovery algorithms can be
found in supplementary material.

EEG data. During the second stage of sleep, the brain
activity slows down, except for short bursts of activity that
help resist awakening by external stimuli. On an electroen-
cephalogram (EEG), these short bursts of activity fall into
two categories: the K-complexes and the sleep spindles [28].
A K-complex is the succession of high-voltage positive and
negative peaks that last for about 600ms and occur every
1 or 2 minutes. Sleep spindles correspond to 11 to 16 Hz
voltage oscillations and last for about 0.5 to 1.5 seconds.
We ran the adaptive algorithm on the EEG of a patient in
the second stage of sleep [28]. It is a single-channel EEG
sampled at 100hz, and we selected a 500-second window. We
set the window length to 1 second and the number of neighbors
to 5. The persistence diagram, Figure 7-B (left), shows that
the algorithm has detected two motif sets. The first motif set
gathers K-complexes, and the second set corresponds to sleep
spindles, Figure 7-B (right).

In both cases, the algorithm has detected patterns that
account for the patients’ physiological state. The persistence
diagrams ensure the relevance of these patterns because they
significantly detach from the rest of the time series.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 11

Fig. 7. (left): persistence diagrams, (middle): time series with colored motif sets, (right): motif sets with barycenters. (A) Electrocardiogram: ECG of a patient
with premature ventricular contraction (PVC). The persistence diagram shows two significant motif sets; pattern 0 represents heartbeats with PVC, and pattern 1
represents normal heartbeats. Vertical dashed lines on the time series plot indicate the start location of the pattern occurrences. (B) Electroencephalogram:
single-channel EEG of a patient in a second stage of sleep. The persistence diagram indicates two significant motif sets; pattern 0 represents K-complexes,
and pattern 1 represents sleep spindles. Both patterns represent short bursts of brain activity that help resist awakening by external stimuli.

B. Comparison with state-of-the-art

In this experiment, we evaluate the performance of PEPA
and A-PEPA with 5 state-of-the-art algorithms on two tasks
of increasing complexity:

• occurrence detection: Ability to localize pattern occur-
rences regardless of their motif set membership.

• motif set discovery: Ability to localize pattern occur-
rences and classify them according to their motif set
membership.

For PEPA and A-PEPA, the window length is set to the
average pattern length minus its standard deviation, and the
number of neighbors is set to 5 for each dataset. For SetFinder,
LatentMotif, STOMP, and VALMOD, the window length is
set to the average pattern length, and the radius is set with
a gridsearch on each dataset. For Grammarviz, the window
length is set to the average pattern length; the radius, the
alphabet, and the word size are set with a gridsearch on each
dataset. Parameters settings can be found in supplementary
materials.

For the occurrence detection task, results are shown in
Table III, and the critical difference diagram in Figure 8. We
make several comments:

• PEPA and A-PEPA are the best-performing methods, with
a mean rank significantly higher than other methods.

• Our approach has a relatively low f1-score on the refit
data (0.31 only). However, it is still better than other
methods by a margin. Motifs in refit are similar to
square waves, and normalized Euclidean distances have
difficulties fully recovering such patterns.

• On ptt-pgg, methods based on the Z-normalized distance
have low recalls (0.43 at best), contrary to PEPA and A-
PEPA, which have markedly higher recall (0.62 and 0.66)

thanks to the LT-normalized distance. Indeed, motifs
in PPG signals are significantly affected by the trend
induced by subjects’ motions.

For the motif set discovery task, results are shown in Table IV
and Figure 9:

• Again, the mean rank of PEPA and A-PEPA are signifi-
cantly better than other methods. As the number of motifs
is known, PEPA performs better than A-PEPA. Therefore,
if a good calibration of PEPA is possible, it should be
preferred over the adaptive scheme.

• Overall, f1-scores are lower on the motif discovery task
because pattern occurrences must be classified, not just
localized.

• Unlike A-PEPA, MDLC performances drop significantly
from occurrence detection to motif set discovery. MDLC
groups detected occurrences in too many sub-clusters,
whereas A-PEPA better estimates the number of motifs
as depicted in Section V-C3.

C. Influence of the parameters

In this section, we evaluate the influence of three param-
eters: the window length, the number of neighbors, and the
persistence threshold heuristic in A-PEPA.

1) Influence of the window length: Our approach is tested
on dataset (S-2), where all patterns have the same length.
We run each algorithm with the window length parame-
ter ranging from 50% to 150% of the pattern length. All
other parameters are identical to those defined previously.
For VALMOD and MDLC, the minimum/maximum window
lengths are 50%/150%.

The results are shown in Figure 10. PEPA performs better
than other methods for all metrics and most window lengths.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 12

TABLE III
OCCURRENCE DETECTION. SF: SETFINDER, GM: GRAMMARVIZ, LM:

LATENTMOTIF, SM: STOMP, VM: VALMOD, MC: MDLC
algorithm SF GM LM SM VM MC PEPA A-PEPA

dataset metric

(S-1) single f1-score 0.98 0.07 0.27 0.71 0.86 0.85 0.96 0.97
precision 0.99 0.69 0.59 0.98 0.97 0.81 0.96 0.98
recall 0.97 0.04 0.19 0.58 0.78 0.89 0.95 0.96

(S-2) fixed f1-score 0.49 0.20 0.50 0.82 0.82 0.66 0.90 0.89
precision 0.59 0.57 0.68 0.82 0.78 0.60 0.94 0.94
recall 0.47 0.13 0.41 0.84 0.85 0.74 0.87 0.85

(S-3) variable f1-score 0.49 0.02 0.48 0.86 0.76 0.76 0.95 0.95
precision 0.81 0.12 0.74 0.87 0.72 0.75 0.97 0.97
recall 0.37 0.01 0.37 0.86 0.83 0.78 0.94 0.93

(R-1) mitdb-1 f1-score 0.34 0.01 0.11 0.58 0.67 0.77 0.71 0.75
precision 0.78 0.20 0.96 0.97 0.95 0.91 0.91 0.92
recall 0.28 0.01 0.06 0.46 0.64 0.68 0.60 0.67

(R-2) mitdb-2 f1-score 0.64 0.03 0.30 0.58 0.68 0.67 0.86 0.87
precision 0.93 0.45 0.97 0.97 0.97 0.86 0.94 0.95
recall 0.53 0.02 0.19 0.44 0.59 0.55 0.80 0.80

(R-3) mitdb800 f1-score 0.75 0.13 0.40 0.56 0.70 0.49 0.89 0.89
precision 0.90 0.96 0.87 0.97 0.98 0.92 0.96 0.97
recall 0.67 0.07 0.28 0.43 0.59 0.34 0.84 0.84

(R-4) ptt-ppg f1-score 0.49 0.01 0.12 0.49 0.52 0.71 0.73 0.75
precision 0.91 0.11 0.92 0.97 0.87 0.85 0.96 0.97
recall 0.38 0.00 0.07 0.36 0.43 0.61 0.62 0.66

(R-5) refit f1-score 0.07 0.14 0.12 0.00 0.01 0.07 0.31 0.29
precision 0.06 0.21 0.17 0.00 0.01 0.05 0.23 0.22
recall 0.17 0.19 0.11 0.02 0.04 0.14 0.56 0.51

(R-6) arm-coda f1-score 0.25 0.00 0.44 0.51 0.28 0.54 0.62 0.59
precision 0.24 0.02 0.54 0.47 0.45 0.50 0.61 0.59
recall 0.38 0.01 0.41 0.58 0.28 0.63 0.66 0.62

Fig. 8. Occurrence detection critical difference diagram. The rank is based on
the f1-score. PEPA and A-PEPA perform significantly better than any other
algorithm. Performances between PEPA and A-PEPA are not significantly
different.

Its f1-score is stable and close to the maximum for window
lengths between 80% and 100%, proving its robustness to the
window length parameter. A-PEPA has the best precision, but
its recall drops as the number of motifs tends to get over-
estimated. However, its f1-score remains high and similar to
PEPA, showing its robustness to the window length parameter.
In light of this result, we recommend underestimating the
length of the true patterns when using PEPA and A-PEPA.

2) Influence of the number of neighbors: Setting the num-
ber of neighbors is mandatory to compute the K-nearest neigh-
bor graph (Section III-A). Theoretically, a larger number of
neighbors leads to better performance but higher computation
time and storage. In this experiment, we measured the relative
errors between f1-scores obtained for different numbers of
neighbors and the f1-scores obtained with the whole graph
on all datasets. The number of neighbors ranges from 1 to 15
for PEPA and A-PEPA, and other parameters remain identical.

Results shown in Figure 11 prove that the number of
neighbors has little influence on the performance of PEPA
and A-PEPA. Regardless of the algorithm and for more than 5
neighbors, the average relative error does not exceed 1%, the
average error is less than 0.05%, and the standard deviation
is less than 0.2%. In practice, we recommend setting the

TABLE IV
MOTIF SET DISCOVERY. SF: SETFINDER, GM: GRAMMARVIZ, LM:

LATENTMOTIF, SM: STOMP, VM: VALMOD, MC: MDLC
algorithm SF GM LM SM VM MC PEPA A-PEPA

dataset metric

(S-1) single f1-score 0.98 0.07 0.27 0.71 0.86 0.34 0.96 0.84
precision 0.99 0.69 0.59 0.98 0.97 0.99 0.96 0.98
recall 0.97 0.04 0.19 0.58 0.78 0.21 0.95 0.78

(S-2) fixed f1-score 0.34 0.14 0.41 0.66 0.55 0.61 0.84 0.81
precision 0.28 0.20 0.45 0.71 0.54 0.70 0.86 0.85
recall 0.45 0.11 0.41 0.67 0.63 0.57 0.85 0.81

(S-3) variable f1-score 0.32 0.02 0.39 0.72 0.43 0.75 0.80 0.80
precision 0.31 0.02 0.49 0.74 0.42 0.86 0.81 0.82
recall 0.34 0.01 0.37 0.75 0.54 0.71 0.82 0.81

(R-1) mitdb-1 f1-score 0.34 0.01 0.11 0.58 0.67 0.20 0.71 0.45
precision 0.78 0.20 0.96 0.97 0.95 0.98 0.91 0.96
recall 0.28 0.01 0.06 0.46 0.64 0.12 0.60 0.31

(R-2) mitdb-2 f1-score 0.49 0.02 0.24 0.41 0.51 0.31 0.68 0.59
precision 0.66 0.31 0.73 0.73 0.77 0.82 0.75 0.78
recall 0.44 0.01 0.17 0.32 0.47 0.24 0.65 0.53

(R-3) mitdb800 f1-score 0.35 0.06 0.23 0.25 0.33 0.08 0.46 0.41
precision 0.42 0.53 0.49 0.51 0.52 0.71 0.50 0.53
recall 0.34 0.04 0.19 0.22 0.31 0.05 0.45 0.38

(R-4) ptt-ppg f1-score 0.49 0.01 0.12 0.49 0.52 0.19 0.73 0.50
precision 0.91 0.11 0.92 0.97 0.87 0.97 0.96 0.96
recall 0.38 0.00 0.07 0.36 0.43 0.11 0.62 0.37

(R-5) refit f1-score 0.08 0.10 0.10 0.00 0.01 0.07 0.17 0.20
precision 0.07 0.20 0.13 0.00 0.01 0.14 0.14 0.18
recall 0.16 0.16 0.09 0.02 0.04 0.06 0.35 0.33

(R-6) arm-coda f1-score 0.28 0.00 0.39 0.30 0.14 0.53 0.32 0.32
precision 0.21 0.00 0.40 0.31 0.18 0.55 0.30 0.31
recall 0.54 0.00 0.44 0.41 0.19 0.63 0.45 0.45

Fig. 9. Motif set discovery critical difference diagram. The rank is based
on the f1-score. PEPA performs significantly better than any other algorithm.
The second best performer is A-PEPA. Other algorithms perform significantly
worse.

60
%

80
%

10
0%

12
0%

14
0%

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e

(A): Precision

60
%

80
%

10
0%

12
0%

14
0%

window length

(B): Recall

60
%

80
%

10
0%

12
0%

14
0%

(C): F1-score
SF
GM
LM
SM
VM
MC
PEPA
A-PEPA

Fig. 10. Precision, recall, and f1-score of all algorithms as a function of
window length. The experiment is run on the fixed dataset, and the window
length is expressed as a percentage of the pattern length. The performance in
f1-score of PEPA and A-PEPA is similar. They outperform all other algorithms
in their best configuration over a wide range of window lengths.

number of neighbors to 5; it leads to good performance while
maintaining low computational time and storage.

3) Influence of the persistence threshold heuristic in A-
PEPA: In this experiment, we evaluate the ability of A-PEPA
to detect the exact number of motif sets, and we compare
its performances with the other adaptive method, MDLC, by
measuring the error between the real and predicted number of
motif sets on all datasets presented in Section IV-A. We set
the persistence threshold heuristic of A-PEPA on the second-
largest gap. It enforces A-PEPA to consider variations of the

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 13

1 2 3 4 5 10 15
number of neighbors

0%

1%

2%

3%

4%

5%

av
g

f1
-s

co
re

 re
la

tiv
e

er
ro

r
(A): PEPA

1 2 3 4 5 10 15
number of neighbors

(B): A-PEPA

Fig. 11. Average f1-score relative error per dataset as a function of the
number of neighbors for PEPA and A-PEPA and on all datasets. The baselines
correspond to the scores obtained on the whole graph. For both algorithms,
the relative error is less than 1% for more than 5 neighbors and never exceeds
9%.

single
fixed

variable

mitdb-1

mitdb-2

mitdb800

ptt-ppg

refit
arm-coda

0

10

20

30

40

50

nu
m

be
r o

f m
ot

if
er

ro
r algorithm

A-PEPA
MC

Fig. 12. Boxplots of the error in estimating the number of motif sets with
A-PEPA for all datasets.

most persistent subgraphs as potential motif sets. The results
are shown in Figure 12.

On all datasets except arm-coda (R-6), A-PEPA better
estimates the number of motifs compared to MDLC. The
average absolute mean error is 2.1 for A-PEPA and 12.0 for
MDLC, with a standard deviation of 2.4 vs 10.8. It reflects
the performance drop observed in Section V-B when MDLC
clusters detected occurrences, whereas A-PEPA better retrieves
the number of motif sets thanks to the persistent diagram.

Congruently with its heuristic settings (second most per-
sistent gap), A-PEPA overestimates the number of motifs on
single motif datasets: single (S-1), mitdb-1 (R-1), ptt-ppg (R-
4). The number of motif sets is also greatly overestimated in
rare cases for mitdb-2 (R-2), mitdb800 (R-3); the second gap
leads to the inclusion of many sub-motif sets. However, the
estimation is more accurate for datasets with a larger number
of motif sets and shows less variability.

In practice, we recommend setting the persistence threshold
heuristic to the largest or second largest gap. Alternatively, the
relevance of the threshold can be verified with the persistence
diagram, and recomputing of motif sets is done in O(n log(n))
in the worst case according to Section III-E.

D. Scalability

In this experiment, we evaluated the scalability with the
time series length of PEPA and state-of-the-art algorithms.

We evaluated the algorithm runtime on a dataset consisting
of synthetic time series of the following lengths: 10K, 50K,
100K, 500K, and 1M. We generated 10 time series for each
length following the fixed scenario (S-2) and only modified

104 105 106

time-series length

100

101

102

103

104

se
co

nd
s

Quadratic trend
SF
LM
SM
PEPA
A-PEPA
MC

Fig. 13. Algorithms scalability with the length of the time series. SF:
SetFinder, LM: LatentMotif, SM: STOMP.

the space between successive occurrences. We did not consider
Grammarviz, since it is implemented in Java, and VALMOD,
since we implemented a greedy version that does not consider
its pruning strategy. Nevertheless, the performance of STOMP
is a lower bound of the performance of VALMOD since it
runs STOMP as an initialization. We considered the algorithms
SetFinder, LatentMotif, STOMP, MDLC, PEPA, and A-PEPA.
The parameters of each algorithm were identical to those
defined in the benchmark for the fixed dataset. The timeout
was set to 24 hours. The average runtimes per length are
shown in Figure 13. MDLC is the worst time-performing
algorithm and times out after 100K. SetFinder does not scale
with the length of the time series and times out after 500K.
On the other hand, LatentMotif is the fastest for large lengths
(>300K), but it is slow for small lengths (<50K). This trend
is due to the optimization scheme that limits the number
of distance profiles computed. PEPA A-PEPA and STOMP
scale according to their quadratic time. PEPA and A-PEPA
performances are identical. STOMP is slightly faster than
PEPA, but its advantage decreases as the length of the time
series increases. Indeed, STOMP has to recompute some
distance profiles to create the motif sets, while PEPA creates
motif sets from the precomputed graph.

VI. ACKNOWLEDGMENTS

This work was supported by grants from Région Ile-de-
France (DIM MathInnov). Charles Truong is funded by the
PhLAMES chair of ENS Paris-Saclay.

REFERENCES

[1] https://github.com/thibaut-germain/Persistent-Pattern-Discovery.
[2] A. Bagnall, J. Hills, and J. Lines. Finding motif sets in time series.

arXiv preprint arXiv:1407.3685, 2014.
[3] A. V. Benschoten, A. Ouyang, F. Bischoff, and T. Marrs. Mpa: a novel

cross-language api for time series analysis. Journal of Open Source
Software, 5(49):2179, 2020.

[4] A. Bois, B. Tervil, and L. Oudre. Persistence-based clustering with
outlier-removing filtration. Frontiers in Applied Mathematics and
Statistics, 10:1260828, 2024.

[5] J.-D. Boissonnat, F. Chazal, and M. Yvinec. Geometric and topological
inference, volume 57. Cambridge University Press, 2018.

[6] Y. Chen, K. Chen, and M. A. Nascimento. Effective and efficient shape-
based pattern detection over streaming time series. IEEE Transactions
on Knowledge and Data Engineering, 24(2):265–278, 2010.

[7] S. W. Combettes, P. Boniol, A. Mazarguil, D. Wang, D. Vaquero-Ramos,
M. Chauveau, L. Oudre, N. Vayatis, P.-P. Vidal, A. Roren, and M.-M.
Lefèvre-Colau. Arm-coda: A dataset of upper-limb human movement
during routine examination. https://www.ipol.im/pub/pre/494/.

[8] D. De Paepe, D. N. Avendano, and S. Van Hoecke. Implications of
z-normalization in the matrix profile. In International Conference on
Pattern Recognition Applications and Methods, pages 95–118. Springer,
2019.

https://github.com/thibaut-germain/Persistent-Pattern-Discovery

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 14

[9] J. Demšar. Statistical comparisons of classifiers over multiple data sets.
The Journal of Machine learning research, 7:1–30, 2006.

[10] H. Edelsbrunner, J. Harer, et al. Persistent homology-a survey. Contem-
porary mathematics, 453(26):257–282, 2008.

[11] P. Esling and C. Agon. Time-series data mining. ACM Computing
Surveys (CSUR), 45(1):1–34, 2012.

[12] T. Feng and S. S. Narayanan. Discovering optimal variable-length time
series motifs in large-scale wearable recordings of human bio-behavioral
signals. In ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 7615–7619.
IEEE, 2019.

[13] T.-c. Fu. A review on time series data mining. Engineering Applications
of Artificial Intelligence, 24(1):164–181, 2011.

[14] Y. Gao and J. Lin. Efficient discovery of time series motifs with large
length range in million scale time series. In 2017 IEEE International
Conference on Data Mining (ICDM), pages 1213–1222. IEEE, 2017.

[15] Y. Gao and J. Lin. Hime: discovering variable-length motifs in large-
scale time series. Knowledge and Information Systems, 61:513–542,
2019.

[16] T. Germain, C. Truong, and L. Oudre. Lt-normalized euclidean distance,
a novel distance invariant to linear trend for time series data mining.
http://www.laurentoudre.fr/publis/ICDE2024.pdf.

[17] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov,
R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley.
Physiobank, physiotoolkit, and physionet: components of a new research
resource for complex physiologic signals. circulation, 101(23):e215–
e220, 2000.

[18] J. Grabocka, N. Schilling, and L. Schmidt-Thieme. Latent time-series
motifs. ACM Transactions on Knowledge Discovery from Data (TKDD),
11(1):1–20, 2016.

[19] S. D. Greenwald, R. S. Patil, and R. G. Mark. Improved detection
and classification of arrhythmias in noise-corrupted electrocardiograms
using contextual information. IEEE, 1990.

[20] H. W. Kuhn. The hungarian method for the assignment problem. Naval
research logistics quarterly, 2(1-2):83–97, 1955.

[21] N. K. Lee, F. L. Azizan, Y. S. Wong, and N. Omar. Deepfinder: An
integration of feature-based and deep learning approach for dna motif
discovery. Biotechnology & Biotechnological Equipment, 32(3):759–
768, 2018.

[22] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing sax: a novel
symbolic representation of time series. Data Mining and knowledge
discovery, 15:107–144, 2007.

[23] M. Linardi, Y. Zhu, T. Palpanas, and E. Keogh. Matrix profile x:
Valmod-scalable discovery of variable-length motifs in data series. In
Proceedings of the 2018 International Conference on Management of
Data, pages 1053–1066, 2018.

[24] B. Liu, J. Li, C. Chen, W. Tan, Q. Chen, and M. Zhou. Efficient motif
discovery for large-scale time series in healthcare. IEEE Transactions
on Industrial Informatics, 11(3):583–590, 2015.

[25] J. Lonardi and P. Patel. Finding motifs in time series. In Proc. of the
2nd Workshop on Temporal Data Mining, pages 53–68, 2002.

[26] P. Mehrgardt, M. Khushi, S. Poon, and A. Withana. Pulse transit time
ppg dataset. PhysioNet, 10:e215–e220, 2022.

[27] G. B. Moody and R. G. Mark. The impact of the mit-bih arrhyth-
mia database. IEEE engineering in medicine and biology magazine,
20(3):45–50, 2001.

[28] A. Mueen, E. Keogh, Q. Zhu, S. Cash, and B. Westover. Exact discovery
of time series motifs. In Proceedings of the 2009 SIAM international
conference on data mining, pages 473–484. SIAM, 2009.

[29] A. Mueen, S. Zhing, Y. Zhu, M. Yeh, K. Kamgar, K. Viswanathan,
C. Gupta, and E. Keogh. The fastest similarity search algorithm for
time series subsequences under euclidean distance, August 2022. http:
//www.cs.unm.edu/∼mueen/FastestSimilaritySearch.html.

[30] D. Murray, L. Stankovic, and V. Stankovic. An electrical load
measurements dataset of united kingdom households from a two-year
longitudinal study. Scientific data, 4(1):1–12, 2017.

[31] C. G. Nevill-Manning and I. H. Witten. Identifying hierarchical structure
in sequences: A linear-time algorithm. Journal of Artificial Intelligence
Research, 7:67–82, 1997.

[32] N. Otsu. A threshold selection method from gray-level histograms. IEEE
transactions on systems, man, and cybernetics, 9(1):62–66, 1979.

[33] C. S. Pun, S. X. Lee, and K. Xia. Persistent-homology-based machine
learning: a survey and a comparative study. Artificial Intelligence
Review, 55(7):5169–5213, 2022.

[34] T. Rakthanmanon, E. J. Keogh, S. Lonardi, and S. Evans. Mdl-based
time series clustering. Knowledge and information systems, 33:371–399,
2012.

[35] L. Saclova, A. Nemcova, R. Smisek, L. Smital, M. Vitek, and
M. Ronzhina. Reliable p wave detection in pathological ecg signals.
Scientific Reports, 12(1):6589, 2022.

[36] S. Sarfraz, N. Murray, V. Sharma, A. Diba, L. Van Gool, and R. Stiefel-
hagen. Temporally-weighted hierarchical clustering for unsupervised
action segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11225–11234, 2021.

[37] P. Schäfer and U. Leser. Motiflets: Simple and accurate detection of
motifs in time series. Proceedings of the VLDB Endowment, 16(4):725–
737, 2022.

[38] P. Senin, J. Lin, X. Wang, T. Oates, S. Gandhi, A. P. Boedihardjo,
C. Chen, and S. Frankenstein. Grammarviz 3.0: Interactive discovery of
variable-length time series patterns. ACM Transactions on Knowledge
Discovery from Data (TKDD), 12(1):1–28, 2018.

[39] P. Senin, J. Lin, X. Wang, T. Oates, S. Gandhi, A. P. Boedihardjo,
C. Chen, S. Frankenstein, and M. Lerner. Grammarviz 2.0: a tool for
grammar-based pattern discovery in time series. In Machine Learning
and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2014, Nancy, France, September 15-19, 2014. Proceedings, Part
III 14, pages 468–472. Springer, 2014.

[40] H. Shao, M. Marwah, and N. Ramakrishnan. A temporal motif
mining approach to unsupervised energy disaggregation: Applications
to residential and commercial buildings. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 27, pages 1327–1333,
2013.

[41] H. Sivaraks, C. A. Ratanamahatana, et al. Robust and accurate anomaly
detection in ecg artifacts using time series motif discovery. Computa-
tional and mathematical methods in medicine, 2015, 2015.

[42] N. Tatbul, T. J. Lee, S. Zdonik, M. Alam, and J. Gottschlich. Precision
and recall for time series. Advances in neural information processing
systems, 31, 2018.

[43] S. Torkamani and V. Lohweg. Survey on time series motif discovery. Wi-
ley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
7(2):e1199, 2017.

[44] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and
E. Keogh. Experimental comparison of representation methods and
distance measures for time series data. Data Mining and Knowledge
Discovery, 26:275–309, 2013.

[45] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F.
Silva, A. Mueen, and E. Keogh. Matrix profile i: all pairs similarity
joins for time series: a unifying view that includes motifs, discords and
shapelets. In 2016 IEEE 16th international conference on data mining
(ICDM), pages 1317–1322. Ieee, 2016.

[46] Y. Zhang, F. Gan, and X. Chen. Motif difference field: An effective
image-based time series classification and applications in machine
malfunction detection. In 2020 IEEE 4th Conference on Energy Internet
and Energy System Integration (EI2), pages 3079–3083. IEEE, 2020.

[47] Y. Zhu, A. Mueen, and E. Keogh. Matrix profile ix: Admissible
time series motif discovery with missing data. IEEE Transactions on
Knowledge and Data Engineering, 33(6):2616–2626, 2019.

[48] Y. Zhu, Z. Zimmerman, N. S. Senobari, C.-C. M. Yeh, G. Funning,
A. Mueen, P. Brisk, and E. Keogh. Matrix profile ii: Exploiting a novel
algorithm and gpus to break the one hundred million barrier for time
series motifs and joins. In 2016 IEEE 16th international conference on
data mining (ICDM), pages 739–748. IEEE, 2016.

Thibaut Germain PhD student at Centre Borelli, a research lab of Ecole
Normale Supérieure Paris-Saclay (France). Co-supervised by Charles Truong
and Laurent Oudre, his PhD focuses on pattern recognition and representation
in time-series.

Charles Truong Researcher at Centre Borelli, a reseach lab of Ecole Normale
Supérieure Paris-Saclay (France). His research focuses on machine learning
for time series with special attention to the problem of change point detection
in multivariate signals.

Laurent Oudre Full professor at Centre Borelli, a research lab of Ecole
Normale Supérieure Paris-Saclay (France). He leads a team of more than
ten young researchers and has worked for about fifteen years on signal
processing, pattern recognition, and machine learning for time series. His
scientific projects mainly focus on AI applications in health and industry,
often with a strong interdisciplinary component.

http://www.laurentoudre.fr/publis/ICDE2024.pdf
http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html
http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 15

APPENDIX

Motif discovery in time series is an unsupervised event detection task. Like other time series event-based tasks, we evaluate
performance with precision, recall, and f1-score metrics [42]. However, compared to supervised tasks, the computation of these
metrics requires the additional step of pairing real and predicted motif sets. In what follows, we propose a resolution of the
motif sets assignment problem and detail the metrics’ computation.

A. Motif sets assignment problem

Pairing real and predicted motifs sets is a two-level assignment problem: predicted motif sets must be assigned to real motif
sets, and predicted occurrences must be assigned to real ones between paired motif sets. We compute all pairings simultaneously
by maximizing the total overlapping between real and predicted motif sets. Technically, let R = (Ri)1≤i≤|R| the real motif
sets such that Ri = (Rs

i,u, R
e
i,u)1≤u≤|Ri| is the list of starting and ending sample location of occurrences of the ith motif.

Likewise, we define the predicted motif sets ((P s
j,v, P

e
j,v)1≤v≤|Pj |)1≤j≤|P | and ΣN the permutation group of the sequence

(1, . . . , N). Note that we do not enforce the number of motif sets and occurrences to be identical between real and predicted
labels. The total overlapping between real and predicted motif sets is defined by:

total overlapping(R,P) = max
(σ,σ′)∈Σ|R|×Σ|P |

min(|R|,|P |)∑
i=1

C(Rσ(i), Pσ′(i)) (5)

where:

C(Ri, Pj) = max
(π,π′)∈Σ|Ri|×Σ|Pj |

min(|Ri|,|Pj |)∑
u=1

overlap(Ri,π(u), Pj,π′(u)) (6)

and:
overlap(Ri,u, Pj,v) = max(min(Re

i,u, P
e
j,v)−max(Rs

i,u, P
s
j,v), 0) (7)

Optimal pairings, (σ, σ′) ∈ Σ|R| ×Σ|P | and
{
(πi,j , π

′
i,j) |∃u s.t (i, j) = (σ(u), σ′(u)), πi,j ∈ Σ|Ri|, π′

i,j ∈ Σ|Pi|
}

, can be
efficiently retrieved with the the Hungarian matching algorithm [20], [36].

B. Metrics computation

Precision, recall, and f1-score computations rely on the optimal pairings and a threshold τ ∈ [0, 1] that controls the overlapping
ratio. The metrics average elementary metrics computed between paired motif sets; it can be a macro average with weights
wi = 1/|R| or a weighted average with weights wi = |Ri|/

∑|R|
j=1 |Rj |. In what follows, (σ, σ′) is the optimal pairing between

the motif sets of R and P , (π, π′) is the optimal pairing between occurrences of Ri and Pj , and 1 is the indicator function.
1) Precision:

precision(R,P ; τ) =

min(|R|,|P |)∑
i=1

wσ(i) ∗ elementary precision(Rσ(i), Pσ′(i); τ)

elementary precision(Ri, Pj ; τ) =
1

|Pi|

min(|Ri|,|Pj |)∑
u=1

1

(
overlap(Ri,π(u), Pj,π′(u)) ≥ τ(P e

i,π′(u) − P s
i,π′(u))

)
2) Recall:

recall(Ri, Pj) =

min(|R|,|P |)∑
i=1

wσ(i) ∗ elementary recall(Rσ(i), Pσ′(i); τ)

elementary recall(Rσ(i), Pσ′(i); τ) =
1

|Ri|

min(|Ri|,|Pj |)∑
u=1

1

(
overlap(Ri,π(u), Pj,π′(u)) ≥ τ(Re

i,π′(u) −Rs
i,π′(u))

)
3) F1-score:

fscore(R,P ; τ) =
2 ∗ precision(R,P ; τ) ∗ recall(R,P ; τ)

precision(R,P ; τ) + recall(R,P ; τ)

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 16

Electrocardiograms of patients suffering from premature ventricular contractions (PVCs) contain a typical pattern for normal
heartbeats and another typical pattern for heartbeats with PVCs. Several ECGs in the mitdb800 [19] database correspond to
patients suffering from PVCs, and we ran different motif discovery algorithms on a 16-second portion of one of them. Following
figures present the motifs discovered for PEPA (our method), VALMOD [23], STOMP [48], SetFinder [2], LatentMotif [18],
GrammarViz [38], and MDLC [34]. PEPA and VALMOD are the best-performing algorithms. They retrieve both motifs and all
occurrences except one. However, compared to PEPA, VALMOD is not able to fully recover the motif associated with PVC.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 17

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 18

The following tables present the parameter settings of all methods involved in the comparative study (Section V.B). Methods
are gathered by approach. For conciseness, only parameters, except the distance, that are modified across datasets are displayed;
other parameters remain at their default settings and can be found on the Github repository 2.

C. Frequency-based algorithms

SetFinder LatentMotif Grammarviz
radius wlen distance radius wlen distance alphabet size window size word size

dataset

mitdb800 30 95 Z 10 95 Z 4 95 19
ptt-ppg 5 320 Z 5 320 Z 5 320 64
variable 5 150 Z 5 150 Z 5 150 30
arm-coda 10 520 Z 10 520 Z 5 500 100
mitdb-1 5 320 Z 5 320 Z 5 320 80
single 5 100 Z 5 100 Z 5 100 10
refit 5 100 Z 5 100 Z 5 100 10
fixed 5 100 Z 5 100 Z 5 100 10
mitdb-2 5 280 Z 5 280 Z 5 280 70

D. Similarity-based algorithms

STOMP VALMOD MDLC
radius ratio wlen distance radius ratio min wlen max wlen distance min wlen max wlen distance

dataset

mitdb800 3 95 Z 3 80 120 Z 80 120 Z
ptt-ppg 3 320 Z 3 260 401 Z 260 401 Z
variable 3 150 Z 3 100 201 Z 100 201 Z
arm-coda 2 520 Z 2 400 601 Z 400 601 Z
mitdb-1 3 320 Z 3 220 401 Z 220 401 Z
single 3 100 Z 3 95 105 Z 100 101 Z
refit 2 100 Z 2 80 121 Z 80 121 Z
fixed 2 100 Z 2 100 101 Z 100 101 Z
mitdb-2 3 280 Z 3 200 351 Z 200 351 Z

E. Persistence-based algorithms

PEPA A-PEPA
wlen distance wlen distance

dataset

mitdb800 60 LT 60 LT
ptt-ppg 260 LT 260 LT
variable 100 LT 100 LT
arm-coda 400 LT 400 LT
mitdb-1 220 LT 220 LT
single 100 LT 100 LT
refit 80 LT 80 LT
fixed 100 LT 100 LT
mitdb-2 180 LT 180 LT

2Github: https://github.com/thibaut-germain/Persistent-Pattern-Discovery

https://github.com/thibaut-germain/Persistent-Pattern-Discovery

	Introduction
	Background
	Definitions
	Related work
	Frequency-based algorithms
	Similarity-based algorithms

	Contributions and scientific positioning

	Method
	From time series to graph
	Graph clustering through persistent homology
	Computing the persistence of connected subgraphs
	Identifying connected subgraphs related to motif sets from the persistence diagram
	Create clusters from the selected connected subgraphs

	From clusters to motif sets
	Adaptive algorithm: A-PEPA
	Time complexity and parameter tuning
	Parameter tuning

	Experimental settings
	Datasets
	Synthetic datasets
	Real datasets

	Performance metrics
	State-of-the-art methods and implementation details

	Experimental Evaluation
	Qualitative evaluation
	Comparison with state-of-the-art
	Influence of the parameters
	Influence of the window length
	Influence of the number of neighbors
	Influence of the persistence threshold heuristic in A-PEPA

	Scalability

	Acknowledgments
	References
	Biographies
	Thibaut Germain
	Charles Truong
	Laurent Oudre

	Appendix
	Motif sets assignment problem
	Metrics computation
	Precision
	Recall
	F1-score

	Frequency-based algorithms
	Similarity-based algorithms
	Persistence-based algorithms

