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Abstract

In the past few years, light, affordable wearable inertial measurement units have been pro-

viding to clinicians and researchers the possibility to quantitatively study motor degeneracy

by comparing gait trials from patients and/or healthy subjects. To do so, standard gait fea-

tures can be used but they fail to detect subtle changes in several pathologies including mul-

tiple sclerosis. Multiple sclerosis is a demyelinating disease of the central nervous system

whose symptoms include lower limb impairment, which is why gait trials are commonly used

by clinicians for their patients’ follow-up. This article describes a method to compare pairs

of gait signals, visualize the results and interpret them, based on topological data analysis

techniques. Our method is non-parametric and requires no data other than gait signals

acquired with inertial measurement units. We introduce tools from topological data analysis

(sublevel sets, persistence barcodes) in a practical way to make it as accessible as possible

in order to encourage its use by clinicians. We apply our method to study a cohort of patients

suffering from progressive multiple sclerosis and healthy subjects. We show that it can help

estimate the severity of the disease and also be used for longitudinal follow-up to detect an

evolution of the disease or other phenomena such as asymmetry or outliers.

Introduction

Longitudinal follow-up and inter-individual comparison of gait trials are relevant for patients

suffering with many degenerative diseases [1]. One example of such a disease is progressive

Multiple Sclerosis (MS), for which gait is considered the most important source of disability

[2]. Throughout this article, we will use MS as an example to illustrate our approach. Those

intra/inter-individual comparisons are usually performed using semi-quantitative clinical

scales, but those have limitations. In the case of MS, several clinical scales exist such as the

Expanded Disability Status Scale (EDSS) [3], the Multiple Sclerosis Walking Scale-12 [4], and

the Fatigue Impact Scale [5, 6]. In this study, severity of the disease was evaluated using the
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EDSS, which is a score from 0 to 10, ranging from normal neurological examination (0) to

total impotence (9.5) or even death (10) by increments of 0.5. Those scales provide semi-quan-

titative or qualitative criteria for disease follow-up but they have been criticized for several rea-

sons, including a lack of objectivity and sensitivity to clinical evolution [7–12]. This motivates

the use of quantitative methods.

Over the past few years, gait quantification was made easier by the development of light,

affordable inertial measurement units (IMUs). IMUs are portable systems integrating acceler-

ometers, gyroscopes, and magnetometers that allow the synchronized measurement of linear

accelerations and angular velocities in one single light, low-cost device [13]. Standard features

such as velocity, step time or step length can be extracted from IMU signals. They have been

used to discriminate healthy subjects from patients, or groups of patients with different levels

of disease severity, but those studies rely on long protocols (walking for several minutes to get

a high number of steps) [14–16] and/or gait event detection [14, 15, 17–20]. Long protocols

are incompatible with patients with severely altered gait who have trouble walking a few

meters, and are more difficult to include in clinical day-to-day practice. Gait event detection is

either performed using expensive equipment (pressure sensitive mats, motion capture) or

complex algorithms. However, those complex algorithms are difficult to apply to gait signals

from pathological subjects with severely altered steps. For example, in step detection, the error

on the detected start/end time of steps is typically around 10 ms for healthy subjects (HS) [21]

and around 100 ms for severely affected MS patients [22]. Moreover, the above studies do not

perform comparisons between different trials of the same subjects at different dates, in which

case changes can be more subtle depending on the progression of the disease. This raises the

question of how to compare gait trials, especially when some of them are from pathological

subjects.

The goals of this article are to present a method to compare pairs of gait trials, visualize the

results of all the comparisons and interpret them. Our approach is based on Topological Data
Analysis (TDA), which we use to define a distance between gait signals, allowing us to compare

gait trials. We then use a visualization algorithm to represent each trial as a 2D-point and com-

pute features to study the structure of the obtained point cloud. By dividing the point cloud

into different groups, our method makes it possible to perform both global studies to find dif-

ferences in gait for different levels of severity of the disease, and longitudinal studies about the

evolution of patients’ gait in time. TDA is a set of techniques derived from algebraic topology,

which allows to analyze the structure of data by looking at it at different scales, and to describe

the evolution of their arrangement. (see [23, 24] for a detailed introduction). The main idea

behind TDA is that data are a finite subset of samples of an underlying mathematical set,

whose structure can bring useful information about the system under study. For instance, a

gait signal is represented by a time series, i.e. a uniform sampling of a continuous 1-dimen-

sional physiological signal. In this setting, one of the main TDA techniques, so-called persistent
homology, can be used to study the underlying continuous signal through the finite time series.

TDA has been applied to time series in medicine and biology since the 2010s. Applications

include the study of cardiac arrythmia with electrocardiograms [25], motor learning with

fMRI data [26, 27], gene expression time series [28], wheeze in breathing signals [29], epileptic

seizures with electroencephalograms [30], the spread of COVID-19 [31] and autism spectrum

disorder [32].

TDA has been applied to the study of locomotion through time series. Motion capture data

has been analyzed using TDA to model bipedal walking [33] or to perform action recognition

(classification between dance, jump, run sit and walk) [34]. It has also been used to study

degenerative diseases by performing binary classification of time series of gait parameters

(stride, stance, and swing time) between healthy and pathological subjects (suffering from
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either Parkinson’s disease, Huntington’s disease or Amyotrophic lateral sclerosis) [35, 36],

multi-class classification of ground reaction force time series to assess the severity of Parkin-

son’s disease [37], or detection of freezing-of-gait episodes [38]. To the best of our knowledge,

TDA was mainly used to produce features that were fed to machine learning algorithms (such

as SVM, random forest, nearest neighbors or deep neural networks) [25, 32, 34–39]. Topologi-

cal features increased their performance, but they are more difficult to interpret than tradi-

tional ones (such as, for the study of locomotion, speed, step length, step time etc. . .) so the

interpretability of the methods used in those articles is not studied. In this article, we propose

an interpretable TDA-based method to compare gait trials. More precisely, we use objects

from TDA to represent gait trials as points in a space in which a distance can be defined. This

distance can be interpreted in terms of signal oscillations and used to compare gait trials. We

applied our method to study a cohort of healthy and pathological subjects as a whole, and per-

formed both inter-individual and intra-individual comparisons. In addition, the method has

the advantage of working for time series measured with light, affordable IMUs during a proto-

col used in clinicians’ day to day practice.

In the first section, we describe the protocol applied to construct our dataset, introduce the

method and its applications, and describe the mathematical concepts required to understand

it. In the second section, we present the results of the application of our method to study MS.

In the third section, we analyze and discuss those results.

Materials and methods

Protocol and data

Our dataset is composed of gait trials from 22 MS patients and 10 young HS. The studies

involving human participants were reviewed and approved by Protection des Personnes

Nord Ouest III (ID RCB: 2017-A01538–45). The patients/participants provided their written

informed consent to participate in this study. The protocol is a walking exercise consisting in a

12m walk with a U-turn while wearing 4 XSens1 sensors (XSens1 Technologies, Enschede,

the Netherlands; autonomy 6 h, device dimension 47 × 30 × 13 mm, weigth 16 g, acceleration

range ±160 m/s2, angular velocity range ±2000 deg/s, dynamic accuracy roll/pitch 0.75 deg

RMS, dynamic accuracy heading 1.5 deg RMS): one on the dorsal part of each foot (left foot:

LF, right foot: RF), one on the lower back (T) and one on the head (H), fixed using a Velcro

band designed by XSens1. Additional measurements including average walking speed were

done for each trial using information from a GaitRite1mat, which detects the initial and final

contacts of the feet on the ground. The experiment was conducted in two sessions, 6 months

apart, that will be referred to as M0 and M6. During each session, the protocol was performed

twice. The part of the signals corresponding to the U-turn was automatically removed (using

the GaitRite1 data, as the U-turn happened outside the mat) so that each exercise gives two

signals: one for the forward path and one for the return. To sum up, for each IMU (LF, RF, T,

or H) of each subject, there are 8 trials: 4 for M0 (F1: forward 1, R1: return 1, F2: forward 2,

R2: return 2) and 4 for M6 (F3, R3, F4, R4).

XSens1 sensors are inertial measurement units (IMUs) that measure the 3D accelerations,

3D angular velocities and 3D magnetic fields. The axes are defined on Fig 1: the Y-axis is paral-

lel to the ground and orthogonal to the walking direction. The data were sampled at 100Hz.

For our study, we used the angular velocity around the Y-axis (Gyr-Y) from the feet IMUs (LF,

RF), which provides signals suitable for gait assessment as it corresponds to the rotation of the

foot around the medio-lateral axis. [21, 40–43]. In what follows, we will refer to those Gyr-Y

signals as gait signals.
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All the subjects were recruited between June and September 2018 at Percy Hospital (Cla-

mart, France). The characteristics of the subjects are displayed in Table 1. Seven out of the 22

participants had an advanced disease requiring permanent walking aid (cane(s), walker and/or

human help). Two patients needed human help to perform the walking test. Included partici-

pants in the MS group had an EDSS between 2 and 6.5, as disabilities greater than 7 completely

impede walking.

Fig 2 shows an example of gait signals for both feet of a healthy subject. Gait signals can

be described as a succession of gait cycles, which are composed of a support phase (when the

foot touches the ground) and an oscillation phase (when it is off the ground) [21]. The sup-

port phase starts with the heel strike (when the foot hits the ground) and ends with the toe off
(when the foot leaves the ground) as shown in Fig 3. The plateau around 0 for angular veloc-

ity corresponds to the phase between the foot flat and the heel off events. During the oscilla-

tion phase, the angular velocity goes up, stays almost constant and then decreases until the

next heel strike.

Overview of our method and guidelines for the clinician

Here, we give an informal description of the objects used in our method and explain how we

use them, followed by guidelines on how clinicians can use our method. The mathematical

concepts corresponding to terms in bold will be described in the following sections.

Overview of our method. The goal of our method is to produce a quantitative analysis of

a database of gait signals, by using comparisons based on topological properties. Given a

Fig 1. XSens sensor, with axes orientations. Source: [21].

https://doi.org/10.1371/journal.pone.0268475.g001

Table 1. Characteristics of the subjects.

MS (n = 22) HS (n = 10)

Sex (M/F) 9/13 4/6

Age (years) 58 (11) 26 (1)

Height (m) 1.71 (0.09) 1.72 (0.09)

Weight (kg) 71.2 (16.6) 58.2 (10.9)

BMI (kg/m2) 24.3 (5.1) 21.0 (3.0)

EDSS 5.0 [3.5–6] -

Baseline characteristics of patients with multiple sclerosis (MS) and healthy subjects (HS). For the age, height, weight

and body mass index (BMI), the mean and the standard deviation (SD) are displayed. For the Expanded Diseases

Status Scale (EDSS) the statistics are reported as median and interval quartile range (IQR).

https://doi.org/10.1371/journal.pone.0268475.t001
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database of gait signals and a partition of those signals into groups, it outputs a 2D point cloud

and a list of features for each group of the partition.

We start by constructing a topological summary of each signal called a persistence barcode.

A persistence barcode is a set of bars that represents the oscillations of a signal, where a long

bar corresponds to a large variation. Each signal is represented by its barcode. There exists a

notion of distance between barcodes called the bottleneck distance, that we use to compare

Fig 2. Two gait signals from a healthy subject. Top: right foot. Bottom: left foot.

https://doi.org/10.1371/journal.pone.0268475.g002

Fig 3. Key events of the support phase of a gait cycle. The events are represented by vertical lines. From left to right:

Heel Strike (black), Foot Flat (blue), Heel Off (green) and Toe Off (red). Pairs of local extrema (A, B) and (C, D) define

bars in the signal’s persistence barcode.

https://doi.org/10.1371/journal.pone.0268475.g003
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pairs of signals via their barcodes. Before computing the bottleneck distance, we remove the

longest bars from each barcode: if the barcode corresponds to a trial with k steps, we remove

the k longest bars. This makes the distance less sensible to the number of steps and more sensi-

ble to the oscillations of the signal (we explain why in the mathematical description).

After having computed all the distances between pairs of barcodes, each barcode is repre-

sented as a point in the 2D Euclidean space using a dimension reduction algorithm called

UMAP. This algorithm outputs a 2D point cloud whose structure is as close as possible to the

structure of our set of barcodes endowed with the bottleneck distance. The obtained point

cloud is a visualization of all gait signals arranged based on their topological similarity. For a

given partition of the dataset, each point can be colored according to its group in order to visu-

alize the groups on the point cloud. For each group, we compute three features: its silhouette

score with respect to other groups (to measure their separability), and its mean squared dis-

tance and diameter (to measure its density).

Our method can be summarized as follows (also see Fig 4):

• Input: a database of gait signals and partitions into groups.

• Construct the persistence barcode from all the gait signals.

• For each signal, count its number of steps k and remove the k longest bars from its barcode.

• Compute the bottleneck distance between all pairs of those barcodes.

• Compute a 2D (or 3D) point cloud using UMAP.

• Output: the point cloud and, for each partition, the silhouette score, mean squared distance,

and squared diameter for all (pairs of) groups.

Guidelines for the clinician. Here, we give guidelines on how to concretely use our

method to study cohorts of patients. For users who do not want to dive into the mathematical

details, all the intermediate steps of the above summary of the method can be considered to

already be implemented.

• Construct a database of gait signals (preferably with information on the number of steps, if

not, compute it automatically as we explain later).

• Recover the point cloud.

• Partition the cohort into groups based on additional information (clinical scales, healthy/

pathological, different sessions, right/left foot etc. . .). Each partition is defined to study a spe-

cific aspect of the cohort.

• For each partition: color points belonging to different groups in different colors, and recover

tables containing all the features (silhouette scores, mean squared distances and squared

diameters, or others if needed).

• Interpret (more details below).

To interpret the results, the key idea is that the relative distances between points on the

point cloud reflect the difference of structure of the oscillations of the signals.

For a given partition, if two groups are well separated on the point cloud, then the criteria

that define the groups are related to the differences of gait trials. For example: if the points

from the M0 session of a given patient are well separated from the M6 points, then there has

been a significant change in the patient’s gait and the clinician can interpret it as an evolution

of the disease. On the contrary, if points of both session are not separable and form one dense
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group, then there is no intra/inter-session variability. If healthy subjects are well separated

from patients, then the disease has an impact on gait. If points from a same session of a subject

have a large mean squared distance (compared to other subjects), this means that there is a

high intra-session variability. If points representing signals from the IMU placed on the left

Fig 4. Summary of our method.

https://doi.org/10.1371/journal.pone.0268475.g004
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foot of a subject are well separated from those representing right foot signals, then there is an

asymmetry.

We followed those guidelines in our study, which we describe in the last sections of this

article.

Mathematical description our of method

This section describes the mathematical construction of the objects from TDA used in our

method.

Persistence barcodes from sublevel sets. We now explain how to perform TDA on time

series using sublevel sets. For a given real-valued function f: t 7! f(t) and threshold a 2 R, the

sublevel set Fα is defined as

Fa ¼ f � 1ð½� 1; a�Þ: ð1Þ

As explained above, our goal is to study the evolution of the arrangement of data through

different scales. This evolution can be summarized by a so-called persistence barcode. Formally,

the persistence barcode (from sublevel sets) of a signal described by a function f is the set of

pairs (date of birth, date of death) of the connected components of the sets Fα as α goes from

−1 to +1. That is to say, for a given α, if Fα has a connected component with no point

belonging to any Fβ such that β< α, we say this component was born at α. If two components

from Fβ, β< α have merged in Fα then we say that the youngest one died at α.

The persistence barcode of the sublevel sets of a time series can be constructed by pairing

local minima to local maxima using the following algorithm (illustrated in Fig 5):

1. Mark the level on the Y-axis of all the local extrema of the signal. The first and last points

can be ignored if they are local maxima.

2. Start drawing a vertical bar going up from the global minimum.

3. Each time the bars reach the level of a another local minimum, start another vertical bar at

this minimum. Then make all the bars go up to the level of the next extrema.

4. Each time the bars reach the level of a local maximum, if that point has one bar at its left

and one at its right, then the shortest of those two bars stops growing. Then make all the

bars go up to the level of the next extrema.

5. When the bars reach the global maximum, stop, as the remaining bar will keep growing

indefinitely.

6. The persistence barcode is made of all the pairs of (start, end) vertical coordinates of the

bars obtained this way (we ignore time coordinates), where the longest bar goes up to +1.

It is usually represented horizontally as in Fig 6. This representation is obtained by keeping

only the bars and Y-axis, and rotating the graph by 90˚ clockwise.

Let us now describe the persistence barcode corresponding to a single gait cycle. Persistence

barcodes of time series can be understood in terms of pairs of local minima and maxima. On

Fig 3, four important local extrema can be noticed:

• One minimum between the heel strike and foot flat (point A on Fig 3). The angular velocity

keeps decreasing for some time after the heel strike before going back to zero at foot flat.

• One maximum around zero at the plateau between foot flat and heel off (point B on Fig 3).
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• A second minimum just before toe off (point C on Fig 3). Heel off makes the angular velocity

decrease below zero and toe off makes it go back above zero.

• A second maximum during the oscillation phase at the high plateau of the gait cycle (point

D on Fig 3).

Let (tP, yP) denote the coordinates of a point P of a time series. The barcode of the signal on

Fig 3 will have two bars that are characteristic of gait cycles: a long bar (yC, +1) corresponding

to the pair (C, D) and a smaller bar (yA, yB) corresponding to (A, B). The other smaller bars are

considered to be oscillations, irregular movements or noise.

Let us now consider full gait trials. Fig 6 shows the persistence barcodes of the two typical

gait signals represented on Fig 2. Three gait cycles can be distinguished for both signals on Fig

2, each one is responsible for a long bar and a medium-sized bar on Fig 6. Note that only one

bar goes to infinity, any other bar corresponding to a pair (P, Q) has coordinates (yP, yQ). The

smaller bars are oscillations. For example, on the LF barcode, the 7th, 8th and 9th bars (counting

from top to bottom) correspond to the oscillation that happens just after heel strike during

Fig 5. Construction of a persistence barcode. 1: Mark all the local extrema except for the first maximum. The minima

are marked by red triangles, the maxima by horizontal lines. 2: Grow bars until the first local maximum. The third bar

stops growing. 3: At the second local maximum, the first bar stops growing. 4: At the third local maximum, the fifth

bar stops growing. 5: At the fourth local maximum, the second bar stops growing. 6: The fourth bar grows to infinity.

Bottom: Horizontal representation of the persistence barcode.

https://doi.org/10.1371/journal.pone.0268475.g005
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each gait cycle (Fig 3 shows where the heel strike happens on a signal). Those oscillations are

less present on the RF signal.

Note that counting the longest bars is equivalent to counting the steps (including the last

step, that may be incomplete): on Fig 6, the three long bars correspond to the three steps visible

on Fig 2.

Distance between barcodes. To compare persistence barcodes, a distance called the bot-
tleneck distance can be used [23]. Recall that a barcode is a set of pairs (x, y) that are the start

and end vertical coordinates of each bar. The same pair can be represented multiple times and

y can be equal to +1 (this happens exactly once if the signal is defined on an interval). For

barcodes B and B0, the bottleneck distance is based on an idea from optimal transport, using

bijections between the two barcodes (functions from B to B0 such that each bar from B0 is asso-

ciated to a unique bar from B). Let Γ(B, B0) be the set of bijections from B to B0. Note that if

two finite sets do not have the same number of elements there are no bijections between them,

so we include to B and B0 all bars (x, x) of length zero (an infinite number of times), so that

there always exists a bijection between B and B0. For any γ 2 Γ(B, B0) and any bar b = (x, y) 2 B
such that γ((x, y)) = b0 = (x0, y0), the two bars can be compared using the infinite norm:

kb � b0k
1
¼

jx � x0j if y ¼ y0 ¼ 1

maxðjx � x0j; jy � y0jÞ otherwise:

(

ð2Þ

For each γ, the pair of bars (b, b0) such that kb − γ(b)k1 is maximal gives a notion of simi-

larity between B and B0 induced by the pairing of bars defined by γ. The bottleneck distance is

defined by choosing the bijection that minimizes this quantity (which means that we associate

each bar of B to the one in B0 that is the most similar). Formally, the bottleneck distance

between B and B0 is given by:

dBotðB;B0Þ ¼ inf
g2GðB;B0Þ

sup
b2B
kb � gðbÞk1: ð3Þ

Fig 6. Persistence barcodes from the sublevel sets of the signals from Fig 2.

https://doi.org/10.1371/journal.pone.0268475.g006
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Stability theorems [44–47] prove that under generic assumptions, barcodes associated with

similar signals are close for the bottleneck distance.

As explained above, the number of long bars in barcodes from gait signals is the number of

steps. This implies that the bottleneck distance between two barcodes corresponding to trials

with a different number of steps will be high. Indeed, in that case, one of the two barcodes will

have more long bars than the other so each bijection γ will pair at least one long bar b to a

short bar γ(b), resulting in a high kb − γ(b)k1 and thus in a high distance.

This means that the bottleneck distance will mainly distinguish signals that have a differ-

ent number of steps. However a different number of steps can be due to many factors such

as experimental conditions, the subject’s height, age, or the foot that does the first step (a RF

and a LF signal from the same exercise can have a different number of steps if a subject starts

and ends with the same foot). To reduce this step-counting effect and focus more on oscilla-

tions, we propose to count the steps on each signal and remove the k longest bars from the

corresponding barcode, where k is the number of steps. The number of steps can be com-

puted from signals using the autocorrelation function (ACF) of each signal. The time when

the second peak of the ACF is reached is the duration of the first gait cycle, and the number

of steps can be deduced from this quantity and the duration of the trial. This method is heu-

ristic and has limitations, notably with signals from patients with very deteriorated gait.

For any future clinical use of our method, steps could be counted during the protocol and

included in the data.

Once the barcodes from every gait signal of the database have been computed, the next step

of our method is the following: for each pair of barcodes B and B0 corresponding to trials with

respectively k and k0 steps, remove the k (resp. k0) longest bars from B (resp. B0) to get a new

barcode ~B (resp. ~B0 ) and compute dBotð
~B; ~B0 Þ.

Visualization algorithm. Barcodes (and the gait signals they represent) can be seen as

points in a (non-Euclidean) metric space, endowed with the bottleneck distance. To be visual-

ized, these points need to be projected onto the 2D or 3D Euclidean space. Several algorithms

can compute such a projection, including the UMAP algorithm [48], t-SNE [49] and multidi-

mensional scaling (MDS) [50]. MDS focuses on respecting the distance matrix, while UMAP

and t-SNE intend to represent the structure of the original metric space. We chose UMAP to

focus on structure, and because its parameters can be chosen so that more global structure is

preserved than with t-SNE.

The UMAP algorithm has been used in applications such as the study of odors and molecu-

lar structures [51], physical and genetic interactions [52] or genomic data [53].

The UMAP algorithm takes as input a distance matrix (here, the matrix of all bottleneck

distances between all pairs of barcodes) and two parameters: n_neighbors and min_dist.

It outputs a 2D (or 3D) point cloud where each point represents a gait signal, whose structure

induced by the Euclidean distance is as close as possible to the structure induced by the bottle-

neck distance on the space of barcodes. That is to say, if two barcodes are close according to

the bottleneck distance, then the corresponding points in the point cloud will be close accord-

ing to the Euclidean distance.

The two parameters control the compromise between respecting the local and global struc-

ture of the data. A low n_neighbors parameter makes the UMAP algorithm focus more on

the local structure around each point, whereas a high n_neighbors will make it focus on

the global structure. The min_dist parameter is the minimum distance allowed between

two points in the point cloud. A low min_dist allows the algorithm to represent similar bar-

codes as close points in the point cloud. A high min_dist will prevent it to produce very

dense neighborhoods to make the global structure appear more clearly.
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In what follows, we use UMAP with the metric induced by the bottleneck distance, with

parameters n_neighbors = 45, min_dist = 0.3 and in 2D. See Fig 7 for an example. Inter-

active versions of the plots are provided with this article.

Feature extraction

The goal of our method is to study a database of gait signals. As the UMAP projection pre-

serves the structure induced by the bottleneck distance between barcodes, information can be

extracted by studying the relative positions and neighborhood relations of points in the point

cloud. To do this, we regroup signals that share a given characteristic (for example: both being

from a healthy/pathological subject, or from the same session) and study the geometry of the

groups and the relations between groups, using three features: the silhouette score (Sil), the

mean squared intra-group distance (MSD) and the squared diameter (SD).

Note that, when using a UMAP projection, no information can be extracted from the abso-

lute coordinates of the points or the absolute distance between two points. The position of a

point should only be studied through its distance to other points, and distances should be stud-

ied in a relative way. For example, saying that point A and point B are closer together than

they are with point C means that signal A is more similar to signal B than to signal C.

Let S = (si)1�i�n be a database of n gait signals and X = (xi)1�i�n be a (2D or 3D) point

cloud obtained with the above method, where each point xi represents a signal si. Let (Ci)i2I be

a partition of X into groups.

Silhouette score. Let i, j be two distinct indices in I, |C| denote the cardinal of set C and

k.k2 denote the Euclidean norm. The silhouette score of a point x 2 Ci, with respect to group j
is defined as:

Silðx;CjÞ ¼
b � a

maxða; bÞ
; ð4Þ

where a ¼ 1

jCi j� 1

P
y2Ci ;y6¼x

kx � yk
2

is the mean distance between x and all other points in the

same group, and b ¼ 1

jCjj

P
y2Cj
kx � yk2 is the mean distance between x and all points in group

j.

Fig 7. UMAP plot colored by group.

https://doi.org/10.1371/journal.pone.0268475.g007
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The silhouette score of group i with respect to group j is defined as the mean silhouette

score of the points of group i with respect to group j:

SilðCi;CjÞ ¼
1

jCij

X

x2Ci

Silðx;CjÞ: ð5Þ

Mean squared distance. The MSD of group i is defined as:

MSDðCiÞ ¼
2

jCijðjCij � 1Þ

X

x;y2Ci ;x6¼y

kx � yk2

2
: ð6Þ

Squared diameter. The squared diameter of group Ci is defined as:

SDðCiÞ ¼ max
x;y2Ci
ðkx � yk2

2
Þ: ð7Þ

Note that we have squared the distance to be consistent with the MSD.

Interpretation of the features. The silhouette score is a clustering evaluation metric that

is used to determine if the groups we define can be considered as clusters in our point cloud. It

takes values between -1 and 1. A value close to 1 means good clustering (the groups are well

separated from one another and dense), a value close to 0 means overlapping groups, and a

value close to -1 means bad clustering.

To understand this, let us consider concrete examples. For a point x 2 C1, Sil(x, C2) = 0.5

means that b = 2a (using the same definition as above for a and b), i.e. that x is on average

twice as far from points of C2 than from points of C1. Thus, Sil(C1, C2) = 0.5 means that on

average a point of C1 will be twice as far from C2 than from C1. On the contrary, Sil(x, C2)< 0

means that x is on average closer to C2 than to C1, and having x in C2 would increase the score.

Negative scores are thus interpreted as bad clustering. If Sil(x, C2) is close to zero, then the dif-

ference between a and b is small compared to the size of the groups, so x can be considered to

be as close to C1 and C2, i.e. x is “between C1 and C2”. A small Sil(C1, C2) then means that the

two groups are overlapping.

The fact that values are always between -1 and 1 is an advantage of the silhouette score com-

pared to other clustering evaluation metrics because it can be interpreted on its own without

necessarily being compared to the score of a different clustering. Note that the silhouette score

is not symmetrical: Sil(Ci, Cj) is not necessarily equal to Sil(Cj, Ci).

The MSD and SD measure the density of the groups. They should only be interpreted rela-

tively to other groups. The MSD measures the average (squared) distance between points of

the same group, so a smaller MSD means that a group has points that are closer to one another

on average. The SD measures the largest of those distances. The SD is complementary to the

MSD because it focuses on the two points that are the furthest apart. For example, a group C1

of points uniformly spread on a line and a group C2 with one point at the beginning of the line

and all the other points at the end would have the same SD but C2 would have a significantly

lower MSD as it is very dense except for one outlier. A joint analysis of the MSD and SD can

thus detect outliers in a group with relatively low MSD and high SD.

Results

We applied our method to study the database of gait signals described above. The study is

divided in three parts: the first one compares healthy subjects (HS) to multiple sclerosis (MS)

patients, the second one is a series of experiments that compare subjects with different EDSS
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scores, and the third one studies the evolution of each subject between M0 and M6. Each

experiment corresponds to a different partition of the database.

HS/MS experiment

Here, we divide our database into two groups: HS and MS. HS is the group of points from

healthy subjects and MS is the group of points from multiple sclerosis patients.

This partition can be visualized on Fig 7. Table 2 shows the Sil, MSD and SD values for the

partition (HS, MS).

The values of the silhouette score are: Sil(HS, MS) = 0.68 and Sil(MS, HS) = 0.41.

EDSS experiments

In this section, we perform a series of experiments to study the relation between the EDSS and

the relative position of points on the point cloud. For a given threshold i, we divide our data-

base into two groups: {EDSS� i} and {EDSS> i}. {EDSS� i} is the group of points from sub-

jects with EDSS lower than or equal to i and {EDSS> i} is the group of signals from subjects

with EDSS strictly higher than i. HS are given an EDSS of 0. We consider the following values

of i: 0, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, and 6 as there are no patients with EDSS under 2 or above 6.5.

Note that the experiment with i = 0 is the HS/MS experiment.

The EDSS corresponding to each point can be visualized on Fig 8. Table 3 shows the Sil,

MSD and SD values for each partition ({EDSS� i}, {EDSS> i}). In this table, for the sake of

clarity, we use the notation Sil(� i,> i) instead of Sil({EDSS� i}, {EDSS> i}).

Table 2. Features for HS and MS patients.

Sil(HS, MS) Sil(MS, HS) MSD(HS) MSD(MS) SD(HS) MSD(MS)

0.68 0.41 6.8 18.6 109.5 147.2

The subjects have been divided into two groups: HS and MS patients. The silhouette scores, MSD and SD have been

computed on those groups.

https://doi.org/10.1371/journal.pone.0268475.t002

Fig 8. UMAP plot colored by EDSS.

https://doi.org/10.1371/journal.pone.0268475.g008
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All silhouette scores are positive. For each i, at least one of the two silhouette scores Sil
({EDSS� i}, {EDSS> i}) and Sil({EDSS> i}, {EDSS� i}) is above 0.5.

Result using walking velocity instead of TDA. Fig 9 shows the point cloud obtained by

performing the same experiment except that the bottleneck distance was replaced by the differ-

ence of walking velocity (in m/s) between trials. Points are colored according to the EDSS of

the corresponding subject.

Longitudinal experiment

In this section, for each subject, we compare the M0 session to the M6 session. We start by

dividing our database into 32 groups (each corresponding to one subject): each subject is given

an ID between 1 and 32, and group i corresponds to signals from subject i. Then, each group i
is subdivided into two groups M0i and M6i. M0i is the group of signals from the M0 session of

subject i, M6i is the group of signals from their M6 session. The final partition has 64 groups:

Table 3. Features for points with EDSS lower or equal to/ stricly higher than each threshold.

i Sil(� i, > i) Sil(> i,� i) MSD({EDSS� i}) MSD({EDSS> i}) SD({EDSS � i}) SD({EDSS> i})

0 0.68 0.41 6.8 18.6 109.5 147.2

2 0.60 0.46 11.2 16.1 136.8 137.5

2.5 0.54 0.44 13.7 16.4 136.8 137.5

3 0.52 0.56 14.0 11.2 136.8 95.3

3.5 0.44 0.58 17.6 9.9 142.0 95.3

4 0.34 0.60 22.4 8.8 168.5 57.3

4.5 0.34 0.60 22.4 8.8 168.5 57.3

5 0.21 0.58 29.9 8.5 210.3 57.3

5.5 0.15 0.70 31.2 4.8 210.3 26.0

6 0.088 0.68 34.1 4.8 210.3 26.0

For a given threshold i, the points from each subject have been divided in two groups: points corresponding to patients with EDSS lower than or equal to i ({EDSS� i}),
and points with EDSS higher than i ({EDSS> i}). The silhouette scores, MSD and SD have been computed on those groups for several values of i.

https://doi.org/10.1371/journal.pone.0268475.t003

Fig 9. UMAP plot obtained using the difference of walking speed as a distance between signals, colored by EDSS.

https://doi.org/10.1371/journal.pone.0268475.g009

PLOS ONE Topological data analysis for the study of locomotion

PLOS ONE | https://doi.org/10.1371/journal.pone.0268475 May 13, 2022 15 / 23

https://doi.org/10.1371/journal.pone.0268475.t003
https://doi.org/10.1371/journal.pone.0268475.g009
https://doi.org/10.1371/journal.pone.0268475


{(M0i, M6i), 1� i� 32}. The goal of this experiment is to study the evolution of each patient,

therefore silhouette scores are only computed for pairs (M0i, M6i).

The partition into 32 groups and the partition into 64 groups can be visualized on the inter-

active plots provided with this paper (along with those corresponding to Figs 7 and 8). Table 4

shows the Sil, MSD and SD values for each pair (M0i, M6i).

Study of subject 12. The two highest silhouette scores are from subject 12: Sil(M012,

M612) = 0.83 and Sil(M612, M012) = 0.96. Subject 12 has an EDSS of 4 at M0 and 5 at M6 and is

the only MS patient to have a variation of their EDSS of more than 0.5.

Fig 10 shows the position of points from subject 12 on the point cloud.

Study of subject 15. Subject 15 has silhouette scores Sil(M015, M615) = 0.49 and Sil(M615,

M015) = −0.21. M615 has the second highest MSD and SD of all M6 sessions.

Fig 10 shows the position of points from subject 15 on the point cloud.

Table 4. Individual silhouette score, mean squared distance and squared diameter for each session.

i (ID) Sil(M0i, M6i) Sil(M6i, M0i) MSD(M0i) MSD(M6i) SD(M0i) SD(M6i)

1 -0.17 0.19 3.1 2.1 12.1 8.9

2 -0.29 0.55 24.9 2.7 99.9 8.0

3 0.32 0.08 1.4 2.2 5.8 6.6

4 -0.03 -0.02 0.9 0.9 3.4 3.0

5 0.01 0.15 0.3 0.3 1.2 1.0

6 -0.06 0.53 1.4 0.2 3.6 0.7

7 0.28 0.40 0.9 0.7 2.7 2.7

8 -0.22 0.14 1.8 0.8 6.6 2.1

9 0.03 -0.11 2.3 3.3 5.3 12.7

10 0.31 0.22 1.9 2.9 6.2 8.7

11 0.21 -0.09 1.3 2.1 3.9 6.1

12 0.83 0.96 1.4 0.1 5.1 0.3

13 0.26 -0.14 0.2 0.4 0.6 1.0

14 0.61 0.79 1.6 0.5 6.0 1.3

15 0.49 -0.21 1.9 9.5 7.5 30.6

16 -0.07 -0.04 3.6 3.3 10.3 10.4

17 0.00 0.02 2.2 2.1 5.7 5.2

18 0.12 -0.12 2.0 3.5 4.8 9.4

19 0.42 0.21 2.3 3.3 10.8 9.1

20 0.47 0.01 0.5 2.2 1.1 8.4

21 0.38 -0.03 4.4 12.8 12.5 37.1

22 0.08 -0.09 0.9 1.1 2.9 3.8

23 0.08 0.19 2.6 1.9 7.2 5.3

24 0.62 0.30 0.6 1.4 2.2 4.7

25 -0.19 0.06 6.0 3.3 23.6 11.4

26 -0.01 0.01 2.2 2.0 8.4 7.4

27 -0.05 0.22 2.7 1.5 7.9 4.2

28 0.52 0.19 1.4 4.0 5.4 16.0

29 0.11 -0.10 2.9 3.4 7.8 14.6

30 -0.07 -0.01 3.2 3.1 7.1 8.4

31 -0.03 0.06 1.6 1.2 5.9 4.0

32 0.29 -0.30 0.5 1.8 1.7 7.2

Sil, MSD and SD values for each pair (M0i, M6i) for each subject of ID i.

https://doi.org/10.1371/journal.pone.0268475.t004
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Study of subject 2. The group M02 of points from the M0 session of subject 2 has the

highest MSD and SD of Table 4: MSD(M02) = 24.9 and SD(M02) = 99.9. The second highest

MSD is about 13 and the second highest SD is about 37.

On Fig 7, the blue point which is the furthest on the right is from the M0 session of subject 2.

Analysis of the results and discussion

Analysis of the results

HS/MS and EDSS experiments. The features from the HS/MS experiments (Table 2)

quantify what could be observed on Fig 7: the HS and MS groups form clusters with high sil-

houette scores (over 0.4), but there is some overlap. The HS group is denser that the MS group,

which can be explained by the fact that the disease is more severe for some patients than

others.

In Fig 8, a global continuity of the color of points can be observed from left (dark blue, low

EDSS) to right (dark red, high EDSS). The goal of studying all partitions ({EDSS� i}, {EDSS>
i}) is to quantify this left/right continuity. The silhouette scores on Table 3 show that {EDSS�
i} and {EDSS> i} almost always form satisfactory clusters, except for {EDSS� i} when i is

above 5 (in that case, the group is sparse and patients with EDSS above 4 are far from the HS).

This shows that our method reflects the global progression of the disease by placing MS

patients with a low EDSS closer to HS than to patients with a high EDSS.

Longitudinal experiment. The objective of this experiment is to study each subject

independently from the others to compare their M0 and M6 sessions. The idea behind our

approach is that gait signals cannot be compared to an absolute reference but an evolution can

be detected by comparing a subject at M6 to himself at M0, thus taking M0 as the reference.

Analyzing the signals from subjects with significant values in Table 4 allowed us to highlight

three different phenomena:

• A significant change in subject 12’s gait between M0 and M6, which we deduce from the fact

that the groups M012 and M612 are almost completely separable (see Fig 10). This evolution

Fig 10. Longitudinal study of subjects 12 and 15. The point cloud is the same as on Figs 7 and 8 but colored

differently. The red (resp. orange) points are the M0 (resp. M6) points of subject 12. The green (resp. blue) points are

the M0 (resp. M6) points of subject 15. Grey points correspond to other subjects.

https://doi.org/10.1371/journal.pone.0268475.g010
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of gait can be linked to the significant evolution of the patient’s disease, as their EDSS goes

from 4 to 5 (and is the only one that has a variation of more than 0.5).

• An asymmetrical gait at M6 for subject 15. Usually, the M0 and M6 silhouette scores of a

given patient are close because if M0 is separable from M6 then M6 should be easily separa-

ble from M0. For subject 15, those scores are Sil(M012, M612) = 0.49 and Sil(M612, M012) =

−0.21. This can be explained by the fact that the M6 group is sparser (its MSD and SD are

among the highest of all sessions). The M6 group is split in two parts of four points each (see

Fig 10). One part (the one closer to the M0 group) is made of the four RF signals of the M6

session, and the other one is made of the LF signals. The significant values for subject 15 on

Table 4 can thus be explained by the apparition of an asymmetry at M6. This explanation is

supported by clinical evidence.

• An outlier and a technical issue in the signal’s acquisition. Subject 2’s M0 group has a MSD

and a SD significantly higher than every other group. It is due to the outlier of the HS group

(the blue point on the right of Fig 7), which belongs to M02. Visualizing this outlier allowed

us, by going back to the associated gait trial, to highlight a segmentation problem during the

construction of the database.

Note that the MSD detects the outlier because the remaining points of the M02 group have

a low density. If it had been denser the MSD would have been lower but the SD would be

similar. This justifies using the squared diameter as a complementary density measure.

Asymmetry can be detected this way in other patients such as for subject 21, and even, at a

lower scale, in the HS group such as for subject 6.

Fig 10 illustrates the above discussion. A similar visual analysis can be performed on all the

other subjects using the interactive plots provided with this paper and Table 4.

Comparison to state of the art

The method presented in this article has the advantage of being non-parametric, except for the

two UMAP parameters, for which the default values suggested by the authors of [48] seem to

be appropriate. Moreover, it only relies on raw gait signals and does not need additional infor-

mation such as step annotations or step detection (although, as mentioned before, knowing

the number of step for each signal can be useful). Thus, it can be applied to any type of gait-

affecting pathology without having to choose new parameters or previously perform step

detection or manual annotations.

Our study of multiple sclerosis shows that the method can identify a global correlation

between the severity of the disease represented by the EDSS and distance to HS points, and

also detects changes in the patients’ gait. Fig 9 shows a point cloud made of dense groups of

points that are completely separable from each other. Several groups are made of points with

different EDSS scores, and there does not appear to be any way to correlate the distribution of

points with their EDSS. This can be explained by the fact that velocity is significantly impacted

by other factors than the disease and thus two subjects with different clinical conditions can

have the same velocity. In particular, this means that, compared to our approach, the differ-

ence of velocity could not be used to detect clinical evolution. Using other standard gait fea-

tures such as step length, step time (or its variation coefficient) or double stance time (or its

variation coefficient) gives similar results to those obtained with velocity.

The use of TDA with sublevel sets to create persistence barcodes and compute distances

between them naturally allows to compare signals from the left foot to signals from the right

foot, as those barcodes are invariant by translation along the time axis. Allowing comparison

between different feet doubles the number of points for each session and thus makes the
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following analysis more relevant. Moreover, it provides a way to detect asymmetry in a sub-

ject’s gait which can further assist clinical gait evaluation. For subjects who have a strong

asymmetry, it may be necessary to separate RF and LF signals to study their evolution as the

effect of an asymmetry on the distance between points may dominate the effect of any other

phenomenon.

Limitations

This work was limited by the size of the database, that only contains signals from 22 MS

patients, and some EDSS values are not represented (4.5 or values under 2). Because of those

missing values, we could not study the impact of MS on gait at its earliest stages. Indeed, our

study of the ({EDSS� i} and {EDSS> i}) groups would allow us to quantify how close patients

with low EDSS are to healthy subjects and refine our analysis of the progression of the disease.

Having more than two sessions per subject would also be beneficial for the longitudinal study.

The second limitation is the access to a ground truth. We used the EDSS as a measure of the

severity of the patients’ disease, but it is limited by its lack of objectivity and of sensitivity to

change (and so are other clinical scores for MS) [7–12]. Indeed, in the studied cohort, EDSS

scores do not vary by more than 0.5 between M0 and M6 in all cases except one, and often

stays the same between two sessions whereas for several patients our method clearly separates

the M0 and M6 points. A different ground truth thus seems necessary to compare the results

of our method to the conclusions obtained with clinical scores.

Perspectives

More work may be done to test our method on more patients to study MS or other pathologies

including some that involve a left/right asymmetry.

The method can be generalized to analyze different physiological signals or any type of time

series, as the only step that is specific to the study of locomotion is the one when bars are

removed from persistence barcodes according to the number of steps. Future work may also

include using different TDA techniques to improve our method for gait signals or to apply it

to other types of signals. An example of such a technique, that is widely used in the literature

on TDA for time series (including [28, 29, 35, 36, 38, 39]), is the delay embedding, which is a

way of transforming a time series into a multi-dimensional point cloud. Using a delay embed-

ding to represent a time series as a d-dimensional point cloud allows to study its persistent

homology in dimension 0 to d − 1 (one persistence barcode can be computed for each dimen-

sion), and different dimensions may contain complementary information. A similar approach

could also be used to deal with multivariate data. One of the challenges of using a delay embed-

ding is that it makes the method more parametric (it introduces at least two parameters: the

dimension of the embedding and the delay) and more difficult to interpret than when using

sublevel sets (in which case barcodes can be interpreted in terms of oscillations, as explained

above).

Conclusion

This article has two main contributions: a non-parametric method to study gait signals and

visualize the results, and an application to study multiple sclerosis both globally and in a longi-

tudinal way. Our method is based on techniques from topological data analysis, which relies

on algebraic topology. Our goal was to present the method in a way that requires no back-

ground in topological data analysis to insist on the ideas behind it and make it more easily

usable by clinicians.
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