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Abstract

We consider the problem of signal interpolation on graphs, i.e. recovering one or multiple graph
signal values from incomplete measurements. We propose a review of the graph signal interpolation
methods, which enlightens the restrictive underlying hypothesis of signal smoothness over the graph.
We formulate a new interpolation framework based on a locality criterion designed to handle non-
smooth signals, and provide corresponding specific solutions. We validate the proposed methods on
synthetic and real-world interpolation problems, and analyse the stability of our methods regarding
the interpolation problem main parameters.
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1. Introduction

In recent years, there has been a significant increase in the production and storage of data from
multiple sources.The underlying structure of these sources can be modeled as a network that carries
information about the organization and interaction of data sources throughout the controlled process.

The presence of missing values in network data streams is an important issue that may arise in
most real-world scenarios. This loss of information can be due to many different factors, such as sensor
default, loss in data transfer or system maintenance. Data interpolation methods are developed in this
context, in order to replace the missing values with reliable estimates. In the common case of sensor
network measurements, the information provided by the proximity or interaction of the sensors can be
a decisive asset for the quality of the interpolation. Recent works have proposed to use the underlying
structure of the data to guide the interpolation process. In particular, Graph Signal Processing (GSP)
[1, 2] has been introduced as an intuitive framework to deal with data lying on a network structure,
which applies to a wide class of classical use cases such as traffic [3, 4], meteorology [5], temperature
[6], human or point cloud motion [7], radio [8], neurosciences [9, 10, 11] and molecule analysis [12].
Reconsidering the interpolation task in the context of graph processing tools appears as a natural
approach to tackle the complex task of missing data estimation.

The main question that arises when dealing with sensor networks is how to improve a signal
processing task with knowledge of the sensor topology. Several approaches for the interpolation of
graph signals under known topology exist in the literature (see Section 3 of this manuscript).Most
methods share the same assumption about the knowledge provided by the graph structure, namely
that the nodes connected by the graph have similar values.This assumption, called smoothness, can
lead to a deteriorated prediction if the signal under study has dissimilar values between the nodes that
are connected with respect to the ground truth topology.

Especially, as will be illustrated in Section 2, in several practical use cases, the smoothness hy-
pothesis is clearly not satisfied. For example, consider a process that involves two highly negatively
correlated sensors. This information cannot be used with the smoothness constraint, that will assume
that neighboring nodes must have similar values. Another example is the case of information senders
and receivers connected by a network. Since their roles are inherently different, there is no a-priori
reason for the connected agents to exchange similar amounts of messages. Nevertheless the number of
interactions of an agent can be estimated from its neighbors. Finally, when considering multimodal
graph signals (for instance weather data such as temperature/pressure/rainfall), it is straightforward
that the quantities measured by a specific sensor are not similar.Yet these measurements carry infor-
mation about each other, which must be taken into account by an appropriate interpolation method.

Recently, linear Structural Equation Model (lSEM) have been applied in the field of Graph Signal
Processing for a joint inference of a new topology and the unknown part of the signals [13]. While the
underlying linear model allows for anti-correlations in the signals, this method is not designed to take
into consideration a previous topology of a sensor network, and a new topology is learned only from
the signals.

In this manuscript, the aim is to find a legitimate trade-off between taking the topology as is,
and learning a new topology from scratch. To this end, our main hypothesis is that the proximity
of two data sources in the sensor network indicates that they have a higher probability of sharing
information, and thus are more likely to contribute to the reconstruction of the other. We propose
a novel penalization for the learning of a lSEM that favors the contribution of local nodes to the
reconstruction process.

Contributions. . The contributions of the paper are as follows:

• A literature review on graph signal interpolation techniques under a formalism that
allows the comparison of most techniques.

• A novel penalization for structural equation learning that enforces proximity of the
reconstruction weights.
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(a) Multimodal graph of 6 sensors collecting temperature,
pressure and rainfall

(b) Human upper body 3D motion during arm lowering.
The red connections correspond to sensors that are
located on the same rigid body part. Their relative

positions are therefore constants.

Figure 1: Two motivating examples : a multimodal graph (left)
and a 3D sensor network (right).

• Four algorithms for the search of the associated optimization problems, along with convergence
results.

• A benchmark of the presented methods on synthetic and real-world datasets.

• A stability analysis of the proposed methods regarding the interpolation problem param-
eters.

2. Background

Before introducing the problem we want to solve and the notations of the article, we will start this
section by introducing several motivating examples that will highlight the foundations of the proposed
approach.

2.1. Motivating examples

Temperature / Pressure / Rainfall graph signals. In this example, we consider a network of
sensors that measure three quantities at different positions on a territory: temperature, pressure and
rainfall. An example of such a network of sensors is shown in figure 1a. The usual methodology to deal
with the different modalities of the signals is to consider a cartesian product of the sensor graph and
a complete graph connecting the different modalities, allowing the problem to be handled by classical
one-dimensional GSP techniques. However, there are no a-priori leads for the signal on the newly
constructed graph to exhibit smoothness properties. In this specific example, without normalization,
there is no reason to expect temperature and pressure data to display similar values. Yet, an interpo-
lation methods should take into account all the available measurements on a sensor, should a specific
modality be missing. This raises the question of how to perform the interpolation, while preserving
the proximity information between the elements that is inherited by both the ground sensor network
and the modalities.

Communication network. Consider a communication network composed of actors playing dif-
ferent roles, like senders and receivers. The number of messages exchanged per actor is a signal that
naturally adapts to the topology induced by the network, but no regularity property is a priori dis-
played by the signals (powerful receivers can have a high number of messages exchanged while being
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Figure 2: Communication network involving users and servers, enhanced with the count of exchanged messages over a
period of time.

connected to small senders). Figure 2 displays an example of such a sensor network. Please note that
on the �gure, the signal is not smooth according to the structure. In the event of missing data, it
seems relevant to estimate the unknown message count of a node from the message counts in itsk-hop
neighborhood. In other words, the relevant information for the interpolation is likely to be localized
"near" the interpolated node. In this example, the structure of the network is a key object that needs
to be taken into consideration for the interpolation of potentially missing data, and not using it could
lead to deteriorated estimates. However, the structure itself is not su�cient, and relevant information
is carried by the signals themselves, such as communication habits (i.e. correlations). An optimal
solution should take advantage of both the signals and the network structure.

3D positions sensor network. 3D position sensors have been widely used in various application
�elds, from medicine to CGI. A natural graph can for instance be constructed by linking sensors
belonging to the same body segments. In the case of missing or noisy data on a set of position
signals, this underlying structure provides an indication on where the information can be found to
perform the estimation. As an example, let us consider a subset of 4 sensors that are located on
a rigid part of the body (e.g., a forearm), positioned such that they form a rectangle during the
measurement process. Figure 1b displays an example of such a sensor network. In the �gure, the red
connections correspond to sensors attached to the same rigid body part. It is straightforward that
the 3D positions over time of these 4 sensors, denoted byp1(t); p2(t); p3(t) and p4(t) follow a simple
linear equation at each time step t, hereby revealing a candidate equation for the interpolation of
p1(t) : p̂1(t) = p2(t) + p4(t) � p3(t). A similar relation can be derived for any subset of sensors that
are close enough to be considered on an nearly rigid sub-structure, or when a speci�c sensor can be
approximated during the process as a weighted barycenter of a set of other sensors. In this particular
example, the locality of the reconstruction weights with respect to the moving object is particularly
relevant for large sensor networks, for it prevents the use of irrelevant linear relations that may appear
with the high dimensionality.

Moreover, the analysis of 3D position data enhanced with a connectivity graph shows us that the
signals cannot be approximated only by their low graph frequencies, invalidating the hypothesis of
smooth signals. Figure 3 displays the time-average distribution of the signals energies in the graph
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Figure 3: Time-mean energy of the mocap dataset in the Graph Fourier Transform space. The 3D data are centered at
each timestep, inducing the inactivity of the 0 frequency. The values are normalized so that they sum to 1.

frequency domain for themocap dataset (see Subsection 6.1 for details on the signals and the graph
generation procedure).

2.2. Problem formulation
Let us consider a graphG containing N nodes, andL graph signals onG stored in a measurement

matrix T of sizeN � L . The matrix T contains missing values: the sets of known/unknown entries
are respectively denoted asK/ U. Provided the known measurementsT K , the aim of the interpolation
task is to �nd a reconstruction matrix X that is coherent with T K , but where all missing values are
replaced by appropriate estimates.

In the article, two con�gurations will be investigated:

ˆ The noiseless casewhere the known values inT are supposed to be noise free. In this con�gu-
ration the known values in X and T are exactly equal, i.e.

X K = T K : (1)

ˆ The denoising casewhere the known values inT are supposed to be noisy and should therefore
be denoised as well. In this con�guration, the constraint for known values writes as

X K = T K + Emeasure (2)

where the measurement errors inEmeasure are assumed to behave as Gaussian noise, i.e.emeasure
i �

N (0; � 2
measure ).

In order to synthesize the presentation of the di�erent problem, we introduce a data-�tting function
' , such that ' (X K � T K ) relates the noise scenario. The corresponding' functions are de�ned as
follows:

' noiseless(X � T ) =

(
0 if X � T = 0
+ 1 otherwise

(3)

' denoising (X � T ) = jjX � T jj2
F (4)
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Symbol Description Dimension

T Measurement matrix RN � L

X Reconstruction matrix RN � L

x A graph signal RN

x i Value of the signal x at node vi R
xn nth row of matrix X R1� L

x l l th column of matrix X RN � 1

X -n X deprived from the nth row R(N � 1) � L

x l
-n x l deprived from the nth row R(N � 1) � 1

K / U Set of known / unknown measurements
X K / X U Vector of all known / unknown values
x l

K / x l
U Known / unknown values of x l

W Graph a�nity matrix RN � N

A Matrix of the reconstruction weights RN � N

an Row n of the matrix A R1� N

an
-n 0 Row n of the matrix A deprived of elementn0 R1� (N � 1)

an 0

n Element at row n, column n0 of the matrix A R
b Vector of the reconstruction intercepts RN � 1

bn Reconstruction intercept at node n R

Figure 4: Notations

2.3. Notations and Graph Signal Processing tools

Let us consider aweighted undirected connected graph G = ( V; E; W ) composed of a �nite
collection of verticesV = f v1; :::; vN g, a set of edgesE � V � V and a weight matrix W 2 RN � N

+ for
which the elementwi;j quanti�es the a�nity between nodes vi and vj . The weight wi;j is equal to 0 for
(vi ; vj ) =2 E, and since graph isundirected , we haveW = W T . The neighborhoodN (vi ) of a node
vi is the set of nodes connected tovi through an edge. The degree of a node is de�ned as the sum of
all its connected weights, and the degree matrixD is the diagonal matrix D = Diag (W 1). Finally,
we assume in this article that the graphG is connected , i.e. that a path can be found between every
pair of nodes.

A real signal on the graph G is a function V �! R. We can represent the signal as a vector
y 2 RN , in which y i is the signal at the nodevi .

Given a graph G = ( V; E; W), an embedding � of G in a D-dimensional space is a mapping
(V �! RD ) such that a notion of proximity (i.e. similarity) is preserved from the graph domain to
the Euclidean space. For the rest of the article,� will denote the RN � D embedding matrix of the
D-dimensional coordinates of the graph nodes representations.

3. Literature review

The problem of signal interpolation has been studied in a dense literature, with the speci�city
of being addressed by numerous mathematical �elds (resulting in a wide variety of frameworks and
denominations, such as interpolation, matrix completion, inpainting, missing value estimation or pro-
cess inference). A clear distinction in this literature can be made on the use of a prior knowledge
about the studied process, in the form of a dependence between signal modalities. A �rst class of
algorithms performs interpolation using prior information about the sensor organization modeled by
a graph structure. These methods �nd their foundations in the GSP literature, and assume that the
observed process is related to the provided topology. The second category of methods does not assume
prior knowledge of such a topology, and aims to learn the relations between the modalities from the
known signal values. A discussion of the two categories of interpolation is presented in the next section.
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Remark 1. In the graph signal reconstruction literature, a large amount of methods assume that the
selection of the set of missing values is performed along with the reconstruction task. These methods
include graph signal sampling [14, 15, 16, 17] and are often used for graph signal compression [1, 18,
19]. In this scenario, the resulting interpolation method and the sampling task are deeply connected,
and the interpolation method is irrelevant if the set of missing values is taken at random. Therefore,
these methods, while being graph signal interpolation methods, will be omitted in our analysis.

Remark 2. Other works related to graph signal interpolation can be found in the GSP literature.
For instance, the hypothesis of a dynamic process such as a di�usive �eld [20, 21, 22] can guide the
estimation. Other works focus on estimating other statistics than the signals themselves, such as the
second order statistics of the signals [23]. These approaches have been omitted in our analysis.

3.1. Signal inference under known topology

Most GSP techniques for signal interpolation exploit the graph information through the use of a
representation space. A representation space� is de�ned by a family of vectors (� 1; :::; � D ) 2 RN � D ,
where each vector displays regularity properties regarding the graph structure. Representing a graph
signal as a linear combination of elements from this family allows a comprehensive quanti�cation of
some signal properties, such as similarity between neighbors or signal variation regularity. Representing
a graph signal as a linear combination of elements of this family allows a complete quanti�cation of
some properties of the signal, such as the similarity between neighbors or the regularity of the signal
variation.

However, not all representation vectors in a family may have the same relevance to decompose
the targeted signal. Some of them are less likely to appear in the decomposition, while others can be
expected to be predominant. Rather than removing the less relevant elements from the representation
family, this relevance can be included in the estimation process by reinforcing each vector of the family
with a penalty. This penalty quanti�es the degree of irrelevance of using each representation vector
independently.

Given a penalized representation space and an interpolation problem, the main objective shifts
from �nding the values on the unknown nodes to �nding the less penalized signal decomposition as
linear combination of the representation vectors. This decomposition is obtained in such a way that
the estimated signal �ts the known values of the matrix T . This way, the resulting interpolation
respects the measurements while displaying the speci�cities induced by the representation space and
its penalization. Once the signal decompositionZ � 2 RD � L has been estimated, the interpolated signal
can be written as a matrix product of the representation family matrix and the decomposition:

X � = �Z � (5)

The interpolation task therefore rewrites as a representation learning problem, where the goal is
to learn the decomposition Z � that �ts the set of known values T K and minimizes the penalization
induced by the weights. This problem writes as

Z � = argmin
Z 2 RD � L

'
�

(T � �Z )K

�
+ 


DX

d=1

h2
d jj zd jj (6)

where

ˆ � 2 RN � D are the representation family

ˆ Z 2 RD � L is the decomposition of the signal in the representation space andzd the d-th row of
Z

ˆ h 2 RD is the vector of penalization weights andhd the d-th element of h

ˆ jj :jj is the penalization norm and 
 the penalization hyper-parameter
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Most graph signal interpolation algorithms can be expressed in this formalism and di�er on two
main points

ˆ The representation space� in which we have prior knowledge on the process

ˆ The regularisation term parametrized by h and jj :jj , function of the signal decomposition in this
representation space

An overview of the most common approaches is displayed on Table 1. First, let us describe the main
parameters of this interpolation process.

3.1.1. Choice of the representation space
In the literature, the initial and preferred approach by most authors is the use of the Laplacian

eigenmaps [24, 25, 26]. This representation space is obtained by taking the eigenvectors of a graph
Laplacian, and is denoted as the spectral domain. The bandlimited version of the Laplacian eigenmaps
is obtained by truncating the same family in order to keep only those eigenspaces whose eigenvalues
are lower than a threshold, which allows to avoid the complete diagonalization. These approaches
seek a solution as a combination of "low-frequency" components, that are relatively smooth on the
graph. Other versions of the Laplacian can be used for the Laplacian eigenmaps embedding, such
as the normalized Laplacian [27, 30] or the random walk Laplacian. These Laplacians normalize the
strength of the weights by taking into account their importance in the local connections.

The Laplacian eigenmaps techniques are speci�c solutions to the problem of generating an Eu-
clidean representation space for graph nodes, which is de�ned as graph embedding [34], and other
graph embedding techniques can be used as representation space for the interpolation method. For
instance, the di�usion map embedding can be used [33], therefore imparting regularity properties of
this embedding to the reconstructed signal.

The graph-based frame theory [28, 29] is a special case of the previously described penalized frame-
work, for the signal is sought as linear combination of elements from a family denoted as a frame.
However, the notion of penalization is not introduced in this approach.

The conditions under which a frame is well suited for band-limited signals interpolation has been
studied in [29]. Su�cient conditions for exact recovery have been established, and the stability in the
case of noisy measurements has been quanti�ed. These theoretical results allow the authors to design
samplers suited for their approaches, minimizing the expected risk.

More generally, any family of vector that carries a graph-related speci�city can be used for the
interpolation. Another relevant option for the choice of the representation vectors is the graph wavelets
[35, 36, 37], for they carry signal localization in both the node domain and the spectral domain at
di�erent scales. However, their applicability for signal interpolation remains to be studied.

3.1.2. Choice of the regularisation
Graph �lters [38, 39] allow to rescale the signal decomposition in the spectral domain. These �lters

emphasize or reduce the energy of the signal in speci�c frequency ranges, and minimizing their response
leads to the consideration of penalization weights introduced in the framework of Equation (6).

The expectation of a smooth signal corresponds to the minimization of the response of the signal
to a simple graphical �lter, provided by the Laplacian itself. It leads to the f

p
� i g penalization

[24, 27, 26, 32]. Bandlimitedness is a constraint that has been introduced in graph signal processing
theory, that decomposes the signal in the Laplacian eigenspaces up to a cut-o� eigenvalue. This
approach corresponds to theD Laplacian eigenmaps with a speci�c value ofD , and no penalization
(h = 0) [24, 25]. The widely-used band-limited hypothesis of graph signals can be imposed to the
reconstruction weights, by using a cut-o� penalization, that associates respectively the low and high
eigenspaces to a low and high penalization [30].

Graph ARMA �lters [31] can be used as well in the interpolation process. These �lters tends to
approximate optimal graph signal responses through the use of rational polynomials of the Laplacian
matrix, which allows a fast computation.
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Table 1: Overview of GSP methods for graph signal interpolation

Paper Algorithm L
Representation

space�

Data at-
tachment
function

'

Penalization
norm jj :jj

Penalization weight
h

Narang 2013 [24]
Uniqueness set
reconstruction

1
Bandlimited

laplacian
eigenmaps

'
noiseless

L 2 0

Narang 2013 [25]
Regularized
intepolation

1
Bandlimited

laplacian
eigenmaps

'
denoising

L 2
f exp(� 1=� i )j� i <

w� g

Kalofolias 2014 [26]
Graph Matrix
Completion

> 1
Laplacian
eigenmaps

'
denoising

L 2 f
p

� i g

Chen 2015 [27]
Graph Signal

Inpainting
1

Normalized
eigenmaps

'
noiseless

'
denoising L 2 f

p
� N

i g

Chen 2015 [27]
Graph Matrix
Completion

> 1
Normalized
eigenmaps

'
noiseless

'
denoising L 2 f

p
� N

i g

Chen 2015 [27]
Robust Graph

Signal Inpainting
1

Normalized
eigenmaps

'
noiseless

'
denoising L 2 f

p
� N

i g

Chen 2015 [27]
Robust Graph

Matrix Completion
> 1

Normalized
eigenmaps

'
noiseless

'
denoising L 2 f

p
� N

i g

Wang 2015 [28] ILSR 1 ILSR Frame '
noiseless

L 2 0

Wang 2015 [28] IPR 1 IPR Frame '
noiseless

L 2 0

Wang 2015 [28] IWR 1 IWR Frame '
noiseless

L 2 0

Tsitsvero 2016 [29]
Frame-based

reconstruction
1

Sampling
Frame

'
noiseless

L 2 0

Tsitsvero 2016 [29]
Frame-based

reconstruction
1

Generalized
Sampling

Frame
'

noiseless
L 2 0

Romero 2016 [30]
Di�usion graph

kernel
1

Normalized
eigenmaps

'
denoising

L 2 f exp (� 2� N
i =2) g

Romero 2016 [30]
P-step random walk

graph kernel
1

Normalized
eigenmaps

'
denoising

L 2 f (a � � N
i ) � p g

Romero 2016 [30]
Regularized graph

kernel
1

Normalized
eigenmaps

'
denoising

L 2 f 1 + � 2� N
i g

Romero 2016 [30]
Bandlimitation

graph kernel
1

Normalized
eigenmaps

'
denoising

L 2
f � 1(f � i < w g) +

(1=� )1(f � i � wg) g

Isu� 2016 [31]
Graph ARMA
interpolation

1
Normalized
eigenmaps

'
denoising

L 2 f P(� i )=Q(� i ) g

Mashhadi 2017 [32]
Sparse Graph
Interpolation

1
Laplacian
eigenmaps

'
denoising

L 1 f
p

� i g

heimowitz 2019 [33]
Di�usion maps
interpolation

1
Graph

di�usion map
'

noiseless

'
denoising L 1; L 0 f (1 � � N

i ) � 1 g
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Another important parameter of the regularization term is the norm used in the loss. Two classical
regularisation terms can be expressed in this formalism. The Ridge regularizer corresponds to the
penalization norm jj :jj2

2 and has been widely used for closed form solution and convergence properties
of iterative algorithms. More recently, the Lasso regularizer (penalization normjj :jj1) has been used
to encourage sparsity in the representation space [32, 33].

3.1.3. Other approaches
Several additional terms can be added to the optimization problem (6). As usual matrix completion,

graph matrix completion [26, 27] adds a nuclear norm term to the optimisation problem, that favors
a low-rank reconstruction, which leads to a better representation of signal. Outliers can also be dealt
with by the addition in the optimisation problem of a sparse outlier matrix [27]. In the rest of the
article, the issue of outliers will not be assessed, however the proposed algorithms can be modi�ed to
handle it.

3.2. Joint signal and topology inference

In many practical use-cases, the graph associated with the studied process is unknown or inaccurate.
A fundamental way to approach the task of interpolating missing signals without prior knowledge of
the graph structure is to infer the dependency relationships between the variables from the known
signal values.

The main hypothesis of most approaches is the Structural Equation Models (SEMs), which postu-
lates that an equation is satis�ed by the di�erent dimensions of the signal. Although promising works
have been done in order to address a broad class of equation natures [40, 41], most approaches focus
on the linear SEM (lSEM), which states that for any signal x ( l ) , its value on noden can be expressed
as:

x ( l )
n =

X

n 6= n 0

an 0

n x ( l )
n 0 + e( l )

n (7)

with e( l )
n a random noise. These equations can be put together in a matrix format, which leads to the

matrix expression of lSEM:
X = AX + Emodel (8)

with Diag( A ) = 0 and traditionally ( emodel ) j
i � N (0; � 2

model ). In the previous equation, an 0

n denotes
the element of the matrix A at row n0 and column n.

The model is described by two parameters :

ˆ The reconstruction weights A

ˆ The noise parameter� model

In this framework, the elements of the matrix A correspond to the coe�cients of the linear structural
equation, and they can be assimilated to the weights of the structure carrying the process. In the
methods presented in this subsection, the matrixA is learnt from the known signals, therefore inherit-
ing the name ofTopology Inference Method. These methods can be grouped into three main categories,
presented in the following subsections.

3.2.1. Statistical approaches
In the statistics literature, several approaches have been introduced in order to perform the joint

estimation of dependency relationships and unknown signals. The MICE algorithm (Multiple Impu-
tation by Chained Equation) [42] has been introduced as a practical way to impute missing data. The
approach consists in performing an initial simple imputation in the dataset, and to iteratively impute
new values through linear regression assuming all the other nodes are known. A similar approach is
produced by Principal Component Analysis (PCA) with multiple imputations [43, 44], in which all un-
known values are estimated at each iteration, without node-by-node estimation. For a comprehensive
survey of PCA imputation with missing values, see [45].
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3.2.2. Matrix completion approaches
Matrix completion is a classical framework for signal interpolation and denoising, that relies on

the key assumption that the complete matrix to be recovered satis�es low rank properties. This
approach leads to rank minimization algorithms [46] that involve singular value decomposition and
signal thresholding [47]. Comprehensive reviews of matrix completion methods have been conducted
in the literature [48, 49, 50, 51, 52].

Remark 3. It is relevant to note that under the low rank criterion, the nullspace of the modeled signal
is not reduced to zero, which implies the lSEM relations. Therefore, learning the low-dimensional
representation of the signal is strongly related to the estimation of a set of linear structural equations.

3.2.3. Graph Topology Inference approaches
More recently, Joint Inference of Signal and Graph (JISG) [13] has been introduced as a novel

approach to simultaneously estimate a graph and the unknown part of the signals. In this framework,
the dependency structure of the nodes is modeled by a graph, which is estimated such that the signals
are smooth on it. The smoothness criterion with regards to the graph de�ned byA is translated
by signals self-similarity through the use of the adjacency operator (i.e. X ' AX ), which implies
the lSEM hypothesis displayed in Equation (8). Su�cient conditions for exact recovery of both the
topology and the signals have been shown in the context of noise-free measurements.

Remark 4. The issue of learning the relations that are satis�ed by the signals, while taking into account
the initial structure, remains mostly unstudied. A �rst approach to attend this problem is to perform
smooth interpolation on a re-weighted version of the original graph [24], seeking a new structure on
which the initially non-smooth signals respect smoothness criterion. However, this approach does not
allow new connections to be added to the graph structure, therefore possibly leading to deteriorated
predictions.

4. Proposed method

As discussed in the literature review, most graph signal interpolation methods either assume that
the signals are smooth with respect to a provided graph structure, or focus on learning a set of relations
that is satis�ed by the signals. In the present work, our proposal is to take into account a provided
graph structure for the estimation of the model respected by the signals. Similarly to [13], we perform a
paired estimation of a linear structural equation model and the missing data. However, this estimation
is guided by a prior knowledge about the sensor dependency, i.e. a known graph structure.

Speci�cally, the assumption made by our model is that the proximity in the provided graph struc-
ture is an indicator of a high contribution in the Linear Structural Model Equations. This assumption is
especially relevant when the studied process depends on a given graph structure, while the smoothness
hypothesis is not respected on it (see Section 2 for motivating examples).

In our approach, two di�erent structures are used to handle non-smooth graph signal interpolation:

ˆ The structure of the data-sources, carried by a known graph, with weight matrix W .

ˆ The structural equations model that is respected by the signals, with coe�cients A and b.

The following section presents the methodology of our approach. First, we present the optimization
problem along with the di�erent terms composing it. Then, an emphasis is made of the graph locality
penalisation and the possible graph distances that can be used.

4.1. Optimization problem description

Provided a graph G, and a set of known measurementsT K , our aim is to estimate the full matrix
X by solving the following optimization problem :
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bA ; b̂; bX = argmin
A ;b ;X

' ( X K � T K )

+ � jjX � (AX + b1T
L )jj2

+ � Loc(A )

Subject to : Diag(A ) = 0:

(9)

In the previous equations, three kind of terms / constraints can be identi�ed:

1. The data term takes the form of a function applied to the di�erence between the known values
and their estimates.

2. The model term quanti�es how well the a�ne model (lSEM) is respected by the estimated
values.

3. The graph term enforces the localisation of the reconstruction weights on the graph structure.

The following section describes each term of the loss function and their impact on the optimization
problem and the resulting interpolation.

4.2. Data term
As presented previously, two cases have to be considered :

ˆ The noiseless case.

The known measurements are assumed to be exact, which corresponds to the following function:

' noiseless(X ) =

(
0 if X = 0
+ 1 otherwise

(10)

In term of optimization resolution, this function corresponds to the addition of the constraint
X K = T K on the variables, which reduces the dimension of the reachable solution space.

ˆ The denoising case.

The known measurements are assumed to be noised, therefore the proximity between the known
values and their estimation is desired, even though a di�erence is expected. The associated
function is the Euclidean norm:

' denoising (X ) = jjX jj2
F : (11)

Using this hypothesis allows for a compromise between �tting the model to the known measure-
ments and �nding a relevant model. The resulting interpolation incorporates a denoised version
of the input known measurements, with regards to the model that has been estimated.

4.3. Model term
As mentioned in the beginning of this section, our method is based on the linear structural

equation model, with the addition of an intercept to the linear equations. The reconstructed matrix
X is assumed to follow an a�ne model written as :

As mentioned at the beginning of this section, our method is based on the linear structural equation
model, with the addition of an intercept to the linear equations. The reconstructed matrix is assumed
to respect an a�ne model written as follows:

X = AX + b(1L )T + Emodel ; (12)

with Diag( A ) = 0 and (emodel ) j
i � N (0; � 2

model ). The model is described by three parameters :
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ˆ The reconstruction weights A

ˆ The reconstruction intercepts b

ˆ The noise parameter� model

The underlying assumption is that the values of a signal on a node can be estimated from the values
on other nodes, by an a�ne formula. Note that this model is general enough to include many graph
signal models. For instance, any reconstruction method that obtains the missing values from a matrix
product of the known values [24, 28, 30] naturally �ts the lSEM hypothesis. In most interpolation
methods, the use of this model is therefore implicit.

4.4. Graph term

In this manuscript, the graph is assumed to be an indicator of information shared between nodes,
and our goal is to achieve a more robust reconstruction by encouraging the involvement of local nodes to
the process. This criterion is induced by a penalization on the a�ne weights of the model parameters.

Given a distance obtained from the graph,dG : V � V �! R+ , (such as the geodesic distance), the
localization penalization is de�ned as :

Loc(A ) =
X

i;j

dG(i; j )2(ai
j )2

= jjD G � A jj2

(13)

This penalty term quanti�es how far the intensities of the weight vector ai are from the node
i in the sense of a distance induced by the graph. In other words, this penalty ensures that the
contributions for signal reconstruction on node i is mostly carried on a set of nodes that are close to
i . Note that the ai values can be positive or negative, which allows to take into account negative
contributions. Moreover, the notion of weight localization and smoothness of the reconstructed signal
are not mutually exclusive, nor equivalent. For a model trained on smooth signals, the localization
penalization term will not prevent the recovery of weights ensuring smoothness, therefore allowing a
similar interpolation.

Figure 5 shows the intuition behind this penalty term. When the localization is small, the missing
node is interpolated with only nearby nodes, forcing the reconstruction weights belonging to distant
nodes to be close to zero.

Remark 5. Notion of graph spread
Our de�nition of the localization penalty is very similar to the notion introduced in graph uncertainty

principle theory [53], in which the notion of signal spread on a graph is de�ned. Given a distancedG

obtained from the graph, the spread centered on the nodei of a graph signalz is provided by

� i (z) =
1

jjzjj2

NX

j =1

dG(i; j )2z2
i : (14)

This normalized function allows to quantify how far the intensity of the signalz is localized from a
node i . In this article, the normalization factor is dropped in order to ensure the convexity of the
sub-problems and the existence of closed form solutions.

4.5. Considered graph distances

As introduced at the beginning of this section, a main contribution of this paper is the graph
localization penalty term described in Section 4.4. In this subsection, di�erent graph distances are
proposed, as well as their e�ect when incorporated to the optimization problem through the graph
term (13).
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