
LINEAR-TREND NORMALIZATION FOR MULTIVARIATE
SUBSEQUENCE SIMILARITY SEARCH

EXTENDED VERSION

DEAR READER. THIS IS AN EXTENDED VERSION OF OUR PAPER [*] THAT INCLUDES ADDITIONAL APPEN-
DICES:

• APPENDIX A: DISCUSSION ON PROPERTIES & LIMITATIONS OF THE Z-NORMALIZATION

• APPENDIX B: EXPERIMENTAL EVALUATION OF THE LINEAR TREND NORMALIZATION IN THE
UNIVARIATE CASE

[*] THIBAUT GERMAIN, CHARLES TRUONG, AND LAURENT OUDRE. LINEAR-TREND NORMALIZATION
FOR MULTIVARIATE SUBSEQUENCE SIMILARITY SEARCH. IN PROCEEDINGS OF THE INTERNATIONAL
CONFERENCE ON DATA ENGINEERING WORKSHOPS (ICDEW), UTRECHT, NETHERLANDS, 2024.

Thibaut Germain
Université Paris Saclay

Université Paris Cité, ENS Paris Saclay,
CNRS, SSA, INSERM, Centre Borelli

F-91190, Gif-sur-Yvette, France.
thibaut.germain@ens-paris-saclay.fr

Charles Truong
Université Paris Saclay

Université Paris Cité, ENS Paris Saclay,
CNRS, SSA, INSERM, Centre Borelli

F-91190, Gif-sur-Yvette, France.
charles.truong@ens-paris-saclay.fr

Laurent Oudre
Université Paris Saclay

Université Paris Cité, ENS Paris Saclay,
CNRS, SSA, INSERM, Centre Borelli

F-91190, Gif-sur-Yvette, France.
laurent.oudre@ens-paris-saclay.fr

ABSTRACT

Finding repeating or anomalous subsequences in long time series is a crucial task in numerous data
analysis pipelines. Most of those methods share a common step where they compute the pairwise
similarity between all subsequences of a time series or between a fixed subsequence and a time series.
However, the presence of a trend in a time series may cause changes in the shape of subsequences,
making the similarity measure less reliable. This article introduces a new normalization scheme
called LT-normalization (for Linear Trend) to prevent this phenomenon. It generalizes the well-known
Z-normalization by removing the linear trend and scaling the subsequences to unit variance. Like
the Z-normalization, we show that the LT-normalization has a computationally efficient recursive
formulation. Thanks to this recursion property, the LT-normalized matrix profile can be computed
with the same quadratic complexity as the classical Z-normalized matrix profile. Our procedure can
naturally cope with multivariate signals. Empirical results on synthetic and real datasets show that the
LT-normalized matrix profile has competitive performances for the best motif pair, similarity search,
and motif set discovery problems.

Keywords time series · similarity measure · normalization · similarity search
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Figure 1: Top: Electrocardiogram (ECG), Middle: Photoplethysmogram (PPG), Bottom: Seismogram (SMG).

1 Introduction

Over the past two decades, motif discovery [24] and anomaly detection [20] on large time series have gained attention
in the research community. Algorithms that solve those tasks take a long time series as input and find repeating or
abnormal subsequences. Applications range from medicine [26], to seismology [28], and industry [27]. Most of those
methods share a common step: computing the pairwise similarity between all subsequences of a time series or between
a fixed subsequence and a time series. This task is often called “subsequence similarity search”. For instance, the
matrix profile and its variants [29, 10, 15] efficiently perform subsequence similarity search to find the best motif pair
in a temporal signal or anomalous subsequences, among other time series primitives. For such algorithms, choosing a
similarity measure between subsequences is an important step as it defines the kind of time series primitives that can be
detected.

In several applications, the distance must be robust to some deformations of the sequences. For instance, in signals
exhibiting a smooth trend, the same pattern can appear several times with different vertical offsets and scales. Depending
on the task, such distortions should not affect the ability of an algorithm to detect patterns or anomalies. While complex
shape deformations must be dealt with an appropriate distance measure (e.g., DTW), a common approach is to
preprocess subsequences before computing sliding Euclidean distances for simple deformations and large time series.
More precisely, subsequences are usually normalized before being compared. The normalization step has been shown
to influence significantly the performance of data mining algorithms for time series [16].

Many normalization procedures exist in the literature, like Z-normalization, MinMax normalization, and UnitLength
normalization. (see [16] for a review). In motif discovery, Z-normalization is the most popular for two reasons. First, it
makes subsequent analysis robust to two frequent distortions, offset and scale. Second, it can be computed efficiently,
which is crucial for algorithms that compute similarities between all subsequences. Indeed, the Z-normalized Euclidean
distance between two subsequences can be computed in constant time by intelligently keeping track of specific quantities
and computing similarities in the time order. Thanks to this algorithmic trick, the matrix profile algorithm has time
complexity O(l2), where l is the time series’ length, which is significantly faster than the naive version, which has time
complexityO(wl2), where w is the subsequences’ length. This trick is essential for similarity search as signals can have
hundreds of thousands or millions of samples [10, 15], resulting in approximately the same number of subsequences.
It contrasts with other task settings, like classification or clustering, where such acceleration tricks are impossible to
compare whole time series. For this reason, most normalization procedures used in classification or clustering cannot
be applied out-of-the-box for subsequence mining.

Despite its popularity, Z-normalization is not robust to some deformations that affect real-world data, and that can be
considered meaningless in some applications. In particular, deformations caused by trends are common in real-world
time series, and removing their effect is necessary when comparing subsequences for some applications. Whenever
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the trend is smooth enough, its effect on a time series can be locally approximated as a linear trend, as illustrated
in Figure 1. The top two figures show an electrocardiogram (ECG) and a photoplethysmogram (PPG), where the
repeated patterns correspond to heartbeats and the trend is due to the movements of the subjects. The last figure shows
a seismograph (SMG) with successive earthquakes altered by seismic noise. In all cases, the slowly evolving trend
changes the orientation of the repeated patterns, making them difficult to detect with the Z-normalized distance. Trend
suppression algorithms can help to diminish these phenomena. However, current state-of-the-art algorithms do not
achieve perfect results, are time-consuming, or require fine-tuning [7, 22]. Also, the longer the subsequence, the more
pronounced this phenomenon is.

Contributions. In this paper, we introduce a novel normalization procedure, denoted LT-normalization (LT refers to
Linear Trend). Combined with the Euclidean distance, it yields the LT-normalized Euclidean distance, invariant to
linear trends, vertical offsets, and amplitude shifts. This normalization can be integrated without any computational
overhead into state-of-the-art algorithms for motif discovery and anomaly detection in long time series thanks to careful
implementation. For instance, similarly to the Z-normalization, the matrix profile with LT-normalized Euclidean distance
has complexity O(l2). Our normalization scheme is easily extendable to the multivariate case. This improvement is
thus cost-free in terms of complexity. We show that adding this extra step can improve the performance of the matrix
profile in some use cases with simulated and real-world data.

Structure of the paper. The first section defines the matrix profile and provides an overview of related research. Then
we present the LT-normalization and some of its properties; in particular, we describe its fast computation. The last
section contains the experimental evaluation that demonstrates the effectiveness of the proposed approach for the motif
pair, similarity search, and motif set problems.

2 Background

This section presents some fundamental definitions and an overview of fast normalization algorithms for subse-
quence similarity search. For ease of comprehension, all definitions are given in the univariate case. They can be
straightforwardly extended to the multivariate setting.

2.1 Definitions

We will follow the formalism introduced in papers [29, 31, 10] for consistency with previous work.

Definition 1 (Time series). A time series is an ordered sequence S = [s1, . . . , sl] of length l of real-valued coefficients
(si ∈ R).
Definition 2 (Subsequence). The subsequence of a time series S ∈ Rl of length w starting at index i ∈ [1, . . . , l−w+1]
is the sequence : Sw

i = [si, . . . , si+w−1]

Definition 3 (Overlapping subsequences). Two subsequences (Sw
i , S

w
j ) of a time series S ∈ Rl overlap if |i− j| < w.

In the following, we fix a time series S ∈ Rl, a window length w > 0, and a distance function d : Rw ×Rw 7→ R+. To
ease notation w is not mentioned Sw

i = Si

Definition 4 (Distance Profile). The distance profile between Si and S is the real valued sequence Di =
[d(Si, Sj)]j=1,...,l−w+1

Definition 5 (Matrix Profile). The matrix profile P of S is the sequence of distance to the nearest non-overlapping
subsequence. Formally, P = [min(Di)]i=1,...,l−w+1 where min(Di) is the distance to the nearest non-overlapping
subsequence of Si.

Definition 6 (Index Profile). The index profile of S is the integer valued sequence IDX = [argmin(Di)]i=1,...,l−w+1

Thus, the pair (P, IDX) provides the location and the distance to the nearest non-overlapping neighbour of each
subsequence according to the distance d.

Definition 7 (Z-normalized Euclidean distance). The Z-normalized distance between x ∈ Rw and y ∈ Rw is :

dZ(x, y) =

∥∥∥∥∥x− µx1

σx
− y − µy1

σy

∥∥∥∥∥
where ∥.∥ is the norm associated to the Euclidean inner product ⟨., .⟩, 1 = (1, . . . , 1) ∈ Rw the unit vector, µx =
w−1

∑w
i=1 xi the empirical mean of x and σ2

x = w−1⟨x, x⟩ − µ2
x the empirical variance of x.
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2.2 Fast computation for Z-normalization

Here we only focus on the Z-normalization scheme. More procedures can be found in [16], although they are given
in the classification/clustering context. It is not obvious if any can be extended for the task of subsequence similarity
search, meaning that there is an efficient implementation as the one we describe now.

While applicable to any distance metric, the matrix profile is frequently utilized in conjunction with Z-normalized
distance [25]. This preference stems from the computational complexity of the brute-force method, which computes
the matrix profile in O(Cl2) time, with C representing the computational time for distance calculation between two
subsequences. To address this challenge, current algorithms leverage the insight that efficient computation of the matrix
profile is achievable for certain distances and normalization techniques (at the expanse of storing additional data for
each subsequence). The Z-normalized distance is one of them, as stated in the following proposition.
Proposition 1. The Z-normalized distance between Si and Sj can be written as:

dZ(Si, Sj) =

√
2
(
w − Ii,j − wµiµj

σiσj

)
where Ii,j = ⟨Si, Sj⟩ =

∑w−1
k=0 si+ksj+k is the inner product between Si and Sj .

Proof. See [28].

The algorithms STAMP [29], STOMP [31] and SCRIMP++ [30] follow this idea and they compute efficiently the
matrix profile for the Z-normalized distance. According to proposition 1, the Z-normalized distance is computed with
the mean and the variance of both subsequences and their inner product. Means and variances of all subsequences are
computed in advance in O(l) [17]; they represent the additional data. The algorithms’ time complexity resides in their
ability to compute the inner products. For the three algorithms mentioned above, the resolution scheme consists of
computing the distance profile for each subsequence successively. STAMP [29] computes the inner products between a
subsequence and all the others with the Fast Fourier Transform (FFT). Its time complexity is O(l2 log(l)). In addition
to means and variances, STOMP [31] stores the inner products of the first subsequence with all the others. Then the
distance profiles are computed successively thanks to the recursive property on the inner product. Its time complexity is
in O(l2). Both STAMP and STOMP are offline algorithms, SCRIMP++ is an anytime algorithm in O(l2) that benefits
from approaches of both offline methods.

These three algorithms are the foundational work around the matrix profile and several variations have been proposed
depending on the context. For instance, VALMOD [10] computes the matrix profile for a range of window lengths.
mSTAMP [28] computes the matrix profile of multidimensional time series.

2.3 Fast computation for other normalizations

While various algorithms have been proposed for the Z-normalized distance, only some are concerned with other
distances. An algorithm is interested in a variation of the elastic distance DTW [21]. It focuses on finding patterns whose
length may vary over time. Lastly, in [5], they study the limitation of the Z-normalized distance in noisy time series and
propose a variation of the Z-normalized distance corrected by the noise variance. They present better empirical results
for the task of anomaly detection. Nevertheless, no distance has been proposed for time series with trend.

3 LT-normalization

This section first recalls some elementary transformations of time series, introduces the LT normalization, its theoretical
properties, the algorithmic procedure for fast computation in a subsequence similarity search setting and the extension
to the multivariate case.

3.1 Transformations

In some contexts, it is desirable to compare subsequences independently of certain transformations. In the following,
we formalize four common transformations applicable to subsequences.
Definition 8 (Amplitude shift). A sequence x ∈ Rw whose amplitude is shifted by λ > 0 is the sequence λx =
(λx1, . . . , λxw).
Definition 9 (Offset shift). A sequence x ∈ Rw whose offset is shifted by b ∈ R is the sequence x + b1 = (x1 +
b, . . . , xw + b).
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Definition 10 (Linear shift). A sequence x ∈ Rw that is linearly shifted by at+ b1 is the sequence x+ (at+ b1) =
(x1 + b, . . . , xw + a(w − 1) + b) where a ∈ R, t = (0, . . . , w − 1) and b ∈ R.

Definition 11 (Additive white Gaussian noise). A noisy version of the sequence x ∈ Rw is the sequence x + ϵ =
(x1 + ϵ1, . . . , xw + ϵw) where ϵi are i.i.d and ϵ1 ∼ N (0, σ2) with σ > 0.

Note that the amplitude, offset and linear shifts can occur simultaneously in real-world settings.

3.2 Definition of the LT-normalization

In this subsection, we introduce the LT-normalization (LT stands for Linear Trend), which is robust to linear, offset, and
amplitude shifts. We first only consider the univariate case: the extension to the multivariate case will be described in
Section 3.5.

Definition 12 (LT-normalized distance). The LT-normalized distance between sequences x ∈ Rw and y ∈ Rw is:

dLT (x, y) =

∥∥∥∥∥ x− (αxt+ βx1)

∥x− (αxt+ βx1)∥
− y − (αyt+ βy1)

∥y − (αyt+ βy1)∥

∥∥∥∥∥
where t = (0, . . . , w − 1) and (αx, βx) are solutions of the linear regression problem:

argmin
(a,b)∈R2

∥x− (at+ b1)∥2 (1)

Remark 1. The linear regression problem (1) has an explicit solution:{
αx = cov(x, t)/σ2

t
βx = µx − αxµt

(2)

where cov(x, t) = 1
w ⟨x, t⟩ − µxµt, µt =

w−1
2 and σ2

t = w2−1
12

3.3 Properties of the LT-normalization

According to Definition 12, the LT-normalization removes the linear trends of both sequences and sets the norm of the
detrended sequences to the unit norm. Thanks to these operations, the LT-normalized distance is invariant to linear,
offset, and amplitude shifts as shown by the following proposition.

Proposition 2. The LT-normalized distance is invariant to linear, offset, and amplitude shifts. For any (x, y) ∈ Rw×Rw,
λx, λy > 0, (ax, ay) ∈ R× R and (βx, βy) ∈ R× R:

dLT (λx(x+ axt+ βx1), λy(y + ayt+ βy1)) = dLT (x, y)

Proof. Application of Definition 12 to the shifted sequences.

In the following proposition, we study the influence of Gaussian noise on the LT-normalization.

Proposition 3. Suppose a sequence x ∈ Rw and two Gaussian vectors ϵ, ϵ′ ∼ N (0, σ2
ϵ Iw) which represent noise. If σx,

µx, αx and σϵ are known, then :

E[d2LT (x+ ϵ, x+ ϵ′)] =
2w

w − 1

(
1 +

(
σx

σϵ

)2 (
1− ρ2x,t

))−1

where ρx,t = cov(x, t)/(σxσt) is the Pearson correlation between x and t.

Proof. We assume that we work with an unbiased estimator of the variance, thus, αxσt = ρx,tσx. Noticing that
βx = µx − αxµt, we have: η2x = ∥x− (αxt+ βx1)∥2 = w(σ2

x − α2
xσ

2
t ), and thus:

η2x+ϵ = η2x+ϵ′ =
w − 1

w

(
σ2
x + σ2

ϵ − ρ2x,tσ
2
x

)
As well, (2σ2

ϵ )(
∑w

i=1(ϵi − ϵ′i)
2) ∼ χ2(w). Then, by linearity of the mean and independence between x and ϵ the

proposition 3 is verified.
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Figure 2: Expected LT-normalized distance value between two noisy version of a sequence x as a function of the ration
between the sequence variance and the noise variance for different value of the Pearson correlation between x and t.

Algorithm 1 ComputeInnerProduct
Require: Q a query sequence, S a time series
w ← Lenght(Q), l← Length(S)
Sa ← append S with w zeros
Qr ← reverse Q
Qa ← append Q with l zeros
Qaf ← FFT (Qa), Saf ← FFT (Sa)
I ← iFFT (ElementwiseProduct(Qaf , Saf ))
return I[w : l]

The LT-normalized distance between two noisy versions of a sequence depends on the signal-to-noise ratio σx

σϵ
. However,

it also depends on the Pearson correlation between x and t. From Proposition 3, the LT-normalized distance is maximal,
thus does not detect matches when sequences are close to being flat (σ2

x/σ
2
ϵ → 0) or linear (ρ2x,t → 1). Figure 2,

illustrates this behaviour; it expresses the expected LT-normalized distance as a function of the ratio of variances for
different values of the Pearson correlation between x and t. The LT-normalized distance has the expected behaviours. In
the case of a noisy time series with a trend, the LT-normalized distance between two almost flat or linear subsequences
is high. Consequently, when the trend is assumed to be locally linear, the LT-normalized distance between two
subsequences of pure trend is high. On the other hand, the distance between two noisy versions of a sequence that is not
flat or linear is low regardless of any linear, offset, and amplitude shifts. Therefore, the distance between two motif
occurrences remains low even in the presence of a trend. Where the Z-normalized distance cannot distinguish motifs
from trends, the LT-normalized distance can differentiate them.

3.4 Fast computation of the LT-normalization with application to subsequence similarity search

Proposition 4 (LT-normalized matrix profile time complexity). The matrix profile combined with the LT-normalized
distance can be computed in O(l2) for a time series S ∈ Rl and any subsequence length w > 0.

Proof. Thanks to an adaptation of STOMP algorithm [28], the matrix-profile combined with the LT-normalized distance
can be computed in O(l2) for a time series S ∈ Rl and any window length w > 0. Indeed, the STOMP algorithm
computes the matrix profile with the Z-normalized distance in O(l2). Its efficiency comes from a recursive formulation
of the Z-normalized distance which allows the computation of any subsequence distance profile in O(l). The recursive
formulation relies on additional data that are computed in a preprocessing step in O(l log(l)).
In what follows, we show that the LT-normalized distance also has a recursive formulation, which relies on additional
data computable in O(l log(l)) during a preprocessing step. Following the framework of the STOMP algorithm, the
matrix profile computation is in O(l2).
Lemma 1. The LT-normalized distance between the subsequences Si and Sj can be expressed as:

dLT (Si, Sj) =

√
2
(
1− Ii,j − w(µiµj + αiαjσ2

t )

ηiηj

)
(3)
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Algorithm 2 ComputeCoefficients
Require: S a time series, w a window length

µ, σ ← ComputeMeanStd(S,w) ▷ See [17]
T ← [1, . . . , w]
IT ← ComputeInnerProduct(T, S)
α← ComputeSlople(IT, µ) ▷ See eq: (2)
η ← ComputeNorm(α, µ, σ) ▷ See eq: (4)
return µ, α, η

Algorithm 3 ComputeMatrixProfile
Require: S a time series, w a window length

l← Lenght(S)
µ, α, η ← ComputeCoefficients(S,w)
I ← ComputeInnerProduct(S[1 : w], S), Iinit ← I
P, IDX ← InitializeMatrixProfile(I, µ, α, η, w)
for i = 2 to l − w + 1 do

for j = l − w downto 1 do
I[j + 1] = I[j] + S[i+ w] · S[j + w]− S[j] · S[i]

end for
I[1]← Iinit[i]
D ← ComputeDistanceProfile(I, µ, α, η, w) ▷ See eq: (3)
P [i], IDX[i]← FindNonOverlappingMinimum(D, i)

end for
return P, IDX

where Ii,j =
∑w−1

k=0 si+ksj+k is the inner product between Si and Sj , µi and σi are the mean and the variance of Si,
αi is the trend estimator of Si and:

ηi = ∥Si − (αit+ βi1)∥ =
√

w(σ2
i − α2

iσ
2
t ) (4)

is the norm of Si without linear trend.

Proof. It suffices to show that for x ∈ Rw and y ∈ Rw:

dLT (x, y) =

√
2
(
1− ⟨x, y⟩ − w(µxµy + αxαyσ2

t )

ηxηy

)
where ηx = ∥x− (αxt+ βx1)∥.
Noticing that βx = µx − αxµt, we have: η2x = w(σ2

x − α2
xσ

2
t ), and: ⟨x − (αxt + βx1), y − (αyt + βy1)⟩ =

⟨x, y⟩ − w(µxµy + αxαyσ
2
t ). Then, with: ∥x/ ∥x∥ − y/ ∥y∥∥2 = 2 (1− ⟨x, y⟩/∥x∥∥y∥), Lemma 1 is verified.

As for the matrix profile combined with the Z-normalized distance, the recursion occurs on the inner product. The
following proposition exhibits the recursion.
Lemma 2 (Inner product recursion). Knowing the inner product Ii,j between the subsequence Si and Sj , the inner
product between Si+1 and Sj+1 can be computed in O(1) with the recursion:

Ii+1,j+1 = Ii,j + si+wsj+w − sisj

According to Equation 3, we store the additional data: (µ, σ, α, η) = (µi, σi, αi, ηi)i=1,...,l−w+1. µ and σ are
computable inO(l) with the procedure presented in [17]. From Equation 2, it is known that for any i, ai = w−1⟨Si, t⟩−
µiµt. It suffices to compute the inner product between t and all subsequences to get α. Thanks to Algorithm 1, which
was first introduced in [29], these inner products can be computed in O(l log(l)). Finally, from Equation 4, η can be
computed in O(l) with σ and α. All additional data can be computed in O(2l log(l)) and the Algorithm 2 summarizes
their computation. Thanks to the additional data (µ, σ, α, η) and the inner product recursive property (Lemma 2), each
distance profile can be computed in O(l).

7
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We summarize the adaptation of STOMP algorithm for the LT-normalized distance in Algorithm 3.
Remark 2. The anytime algorithm, SCRIMP++ [30], and parallel computation with GPUs [28] could also be adapted
to the LT-normalized distance. The only difference with original algorithms [29, 28, 30] resides in the computation of
the additional data α and η.

3.5 Extension to multivariate time series

The extension of LT-normalization to the multivariate setting is straightforward and given in the following definition.
Definition 13. The multivariate LT-normalized distance between x ∈ Rd×w and y ∈ Rd×w is

dMLT (x, y) =

√√√√1

d

d∑
k=1

d2LT (x
(k), y(k))

where x(k) is the kth dimension of the signal.

4 Experimental Evaluation

We evaluated the performance of the LT-normalized distance on three data mining tasks for time series:

• Motif Pair Discovery: Identifying the two most similar non-overlapping subsequences in a time series.
• Similarity search: Identifying all non-overlapping subsequences in a time series that are similar to a query

subsequence.
• Motif Set Discovery: Identifying sets of subsequences encompassing every occurrence of distinct repeated

patterns in a time series.

For reproducibility, the source code and all datasets are available on our webpage [1].

In what follows, we present the datasets and the experimental results for each task. In the last section, we evaluate the
scalability with the time series and the subsequence length of the STOMP algorithm with the LT-normalized distance.

4.1 Datasets

We conducted our experimental evaluation on several labeled datasets constructed from real and synthetic time series.
The datasets are described in more detail in the following paragraphs.

4.1.1 Real-world data

(R-1) mitdb-1, (2 dimensions) [6, 13]: The MIT-BIH Arrhythmia Database contains 48 half-hour recordings of
two-channel ambulatory electrocardiograms (ECGs) sampled at 360Hz. Cardiologists annotated the heartbeats
according to 19 categories1. We divided all recordings into time series of 1 minute. We selected time series
of healthy patients (id: 100, 101, 103, 117, 122, according to [18]) that contain only normal heartbeats and
randomly selected 100 time series.

(R-2) mitdb-2, (2 dimensions): We randomly selected 100 1-minute ECGs from MIT-BIH. The number of repeated
patterns varied between 1 and 4.

(R-3) ptt-ppg, (7 dimensions) [12]: Pule-Transit-Time PPG dataset contains recordings from 22 healthy subjects
performing three physical activities: sit, walk, and run. Each time series includes multiple sensors: photo-
plethysmogram (PPG), inertial, pressure and ECG. All recordings were sampled at 500Hz, the heartbeats
were annotated by cardiologists from ECGs. We kept the run activity and the photoplethysmogram channels
as well as the ECG channel. For all subjects, we divided the recordings into 40-seconds time series, and we
randomly selected 100 time series. This results in a labelled dataset of 100 time series with a single repeated
pattern.

(R-4) arm-coda, (27 dimensions) [4] is a dataset of 240 multivariate time series collected using 34 Cartesian
Optoelectronic Dynamic Anthropometers (CODA) placed on the upper limbs of 16 healthy subjects, each
of whom performed 15 predefined movements such as raising their arms or combing their hair. Each sensor

1https://archive.physionet.org/physiobank/annotations.shtml
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Figure 3: Top: Synthetic time series with a trend and one motif that occurs twice. True motif locations are highlighted
in light purple. The predicted best motif pair is colored in orange for the LT-normalized distance and blue for the
Z-normalized distance. Middle: Matrix profile with the LT-normalized distance. The starting location of the predicted
best motif pair is in orange. Bottom: Matrix profile with the Z-normalized distance. The starting location of the
predicted best motif pair is in blue.

records its position in 3D space. To construct the dataset, we kept sensors describing the upper body
(28,17,10,21,16,8,0,5,11) and 12 of the predefined movements ((0,5,6,),(4,7,8),(9,11,12),(10,13,14)). We
selected the first two occurrences of all movements. Then, by tuple of 3 movements, the occurrences of the
movements were randomly placed along the time axis for each subject, sensor. The distance between two
consecutive occurrences is sampled uniformly over [50, 450]. A Gaussian noise with a signal-to-noise ratio of
0.01 was added to all time series. This resulted in a dataset of 64 time series.

4.1.2 Synthetic data

We have generated one dataset per data mining task with the following scenarios:

(S-1) m-pair, (1 dimension): There is 1 pattern of length 100 and with 1 dimension that repeats twice.
(S-2) s-search, (5 dimensions): There is 1 pattern of length 100 and with 5 dimensions that repeats 50 times.
(S-3) m-set, (5 dimensions): There are 5 patterns of length 100 and with 5 dimensions. For each pattern, the number

of occurrences is sampled uniformly between 2 and 10.

All time series are generated using the same protocol: occurrences of the N repeated patterns are randomly placed on
top of a random walk, and Gaussian noise is added to the resulting time series. In all scenarios, the amplitude of the
Gaussian noise is set to 0.1, and given a fundamental frequency of 4Hz, a pattern is generated as the sum of the sine
function of the hundred first harmonics, with the phases and the amplitudes are uniformly sampled over [−π, π] and
[−1, 1]. For the motif pair dataset, we generated 200 time series for each random walk variance step between 0 and
0.5 by steps of 0.01, and the interval between the occurrences is uniformly sampled over [100, 900]. For the similarity
search and the motif set datasets, we generated 100 time series such that the amplitude of the random walk is set to 0.2,
and the interval between two consecutive occurrences is uniformly sampled over [10, 90].

4.2 Best Motif Pair

In this experiment, we investigated the influence of the trend on the performance of LT-normalized and Z-normalized
distances for solving the Best Motif Pair problem. This problem [10] consists of finding the pair of non-overlapping
subsequences whose distance is minimal compared to all other non-overlapping subsequence pairs. The matrix
profile provides an exact solution to this problem, which corresponds to the indices associated with its minimum

9
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Figure 4: Accuracy scores for the LT-normalized and Z-normalized distances as a function of the random walk variance.

(argmin(P ), IDXargmin(P )). We used this resolution scheme to compare the performance of the distances. Figure 3
illustrates the best motif pair problem and its resolution with the matrix profile. The top figure shows a time series of
the m-pair dataset (S-1). The next figures show the LT-normalized and Z-normalized matrix profiles with the predicted
best motif pair locations. The true motif pair was recovered with the LT-normalized distance, while the Z-normalized
distance identified a pair of nearly linear subsequences of the trend.

To evaluate the influence of the trend on the best motif pair prediction, we considered the m-pair dataset (S-1), where
time series have been generated for different values of the random walk variance. This parameter controls the trend’s
regularity: it decreases as the variance increases. To measure the performance, we compute an event-based accuracy
score. A best motif pair prediction is counted as a true positive if, for each subsequence, the predicted location overlaps
the real location by at least 50%. Figure 4 shows the accuracy scores of both distances as a function of the variance of
the random walk.

When the variance of the random walk is zero, there is no trend; by construction, the signal-to-noise ratio is, on average,
equal to 22 dB. In this case, it is expected that the best motif pairs are most likely well predicted with both distances;
indeed, both empirical scores are equal to one. However, the empirical results show that as soon as the variance of the
random walk increases, the Z-normalized accuracy score decreases. On the other hand, Proposition 3 suggests that the
best motif pair remains detectable with the LT-normalized distance when it can be assumed that the trend can be locally
approximated with a linear sequence. The empirical results are congruent with this observation: the accuracy score
remains consistently high for a low random walk variance (between 0 and 0.2), and then the score decreases as the
regularity of the trend decreases.

Thanks to its linear shift invariance, the detection of the best motif pairs with the LT-normalized distance is more robust
to the deformations induced by the trend.

4.3 Similarity search

In this experiment, we evaluated the performance of LT-normalized and Z-normalized distances in solving the similarity
search problem.

10
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Figure 5: Similarity search on: (A) photoplethysmogram, and (B) electrocardiogram. In both cases, top left: the query
subsequence, top right: the time series with the query subsequence location in blue, middle: LT-normalized distance
profile, bottom: Z-normalized distance profile. Due to the trend, some occurrences of the query subsequences are
missed with the Z-normalized distance profile while they are all identifiable with the LT-normalized distance profile.
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Figure 6: ROC curves of the similarity search problem for LT-normalized (orange) and Z-normalized (blue) distances
on the datasets: (A) s-search, (B) ptt-ppg, and (C) mitdb-1. The LT-normalized distance performs better than the
Z-normalized distance.

The similarity search problem [9] consists in identifying all occurrences of a query sequence in a time series. A classical
approach [14] first computes the Z-normalized distance profile between a query sequence and a time series. From
the distance profile, the starting locations of the occurrences are identified with local minima below a given threshold.
This approach can be extended to the LT-normalized distance, and we used this resolution scheme to evaluate the
performance of the two distances.

We performed our experiment on datasets where the time series have one pattern that repeats multiple times: s-search (S-
2), mitdb-1 (R-1), and ptt-ppg (R-3). Figure 5 illustrates the resolution of the similarity search problem on an ECG
(A) and a PPG (B). In both cases, the top right plot shows the query sequence corresponding to the repeated pattern’s
first occurrence. The top right plot shows the raw signal, and the plots below show respectively the LT-normalized
and Z-normalized distance profiles. For both time series, the distance profiles are minimal at the starting locations
of occurrences of the query sequences. However, the Z-normalized distance profile is sensitive to the trend, and the
distance remains high for some occurrences. On the contrary, the trend less affects the LT-normalised distance profile,
and the distance remains consistently low at the starting location of occurrences. The LT-normalized distance is better
suited for the similarity search on these two time series.

We computed ROC curves for each distance and dataset according to the procedure described in [16]. We counted a
predicted occurrence as valid if it overlapped with a real occurrence by at least 75%. The results are shown in Figure 6.
On average, the LT-normalized distance outperformed the Z-normalized distance as it had a higher AUC score across
all datasets. It is also worth noticing that the ROC curves of the LT-normalized distance are consistently above those
of the Z-normalized distance. Indeed, the LT-normalized distance is a generalization of the Z-normalized distance to
a broader class of deformations. As a result, the LT-normalized distance profiles are more robust to the deformation
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Table 1: F1-Scores on the Motif Set Discovery task. Euclidean (Euc), Z-normalized (Z), LT-normalized (LT), Trend
removal & Z-normalized (STL+Z).

distance Euc STL+Z Z LT
dataset

s-search (S-2) 0.20 0.86 0.87 0.86
m-set (S-3) 0.25 0.62 0.62 0.62
mitdb1 (R-1) 0.42 0.54 0.50 0.58
mitdb2 (R-2) 0.16 0.44 0.43 0.45
ptt-ppg (R-3) 0.54 0.58 0.53 0.57
arm-coda (R-4) 0.25 0.26 0.25 0.25

induced by the trend. Therefore, the number of true occurrences detected with the LT-normalized distance is at least as
good as that of the Z-normalized distance.

4.4 Motif set discovery

In this experiment, we evaluated the performance of LT-normalized and Z-normalized distances in solving the motif set
discovery problem.

The motif set discovery problem [11] consists in identifying all occurrences of each repeated pattern present in a time
series. A heuristic based on the matrix profile has been proposed to solve this problem [31, 2]. This algorithm can be
extended to the LT-normalized distance, and we used it to evaluate the performance of both distances. We also added
two baselines, a matrix profile with the Euclidean distance and a second matrix profile with the Z-normalized distance
where time-series are preprocessed using a trend removal algorithm: A Seasonal-Trend Decomposition Procedure
Based on LOESS (STL) [3]. In terms of settings, the algorithm requires the number of sets to discover, which we
assumed to be known, a subsequence similarity ratio, which we set to 3, and a subsequence length, which we set to be
the average motif length for each dataset. The STL algorithm period is also set to the average motif length.

We ran the experiment on all datasets except the m-pair, as its time series contains a single motif that repeats twice.
We evaluated the performance with the event-based f1-score [23]. We counted a pair of predicted/real occurrences as
valid for the precision (resp. recall) metric if the length of their intersection is greater than 50% of the length of the
predicted (resp. real) occurrence. We used the Hungarian matching algorithm [8, 19] to match the predicted motif sets
and occurrences with the real ones.

Experimental results are shown in Table 1. Compared to the Z-normalized distance, the motif set algorithm performs
better or equally using the LT-normalized distance except on the s-search dataset. Often, LT and STL+Z perform
similarly, meaning that removing a linear trend is useful, and both methods succeed at doing this. However, we will see
in the scalability experiment that STL+Z is more computationally burdensome than LT.

4.5 Scalability

In this experiment, we evaluated the scalability of the matrix profile with respect to the time series length for the
LT-normalized and Z-normalized distances. We considered the STOMP algorithm [31] to compute the matrix profile
with both distances. We generated 50 time series based on the m-set scenario (S-3) with lengths of 10K, 50K, 100K,
500K, and 1M. We measured the computation time for a subsequence length of 100. The average computation time
is shown in Figure 7. Even though the LT-normalized distance generalizes the Z-normalized distance and performs
better on several tasks, the matrix profile’s computation time is equivalent for both distances and evolves according to
its quadratic complexity. STL+Z (not shown on the plot) takes around 1 minute to process 100K samples, compared to
a dozen seconds for LT and Z.

5 Conclusion

We have introduced the LT-normalization, a generalization of the Z-normalisation that is robust to linear, offset, and
amplitude shifts. Combined with this normalization, the matrix profile can be computed in quadratic time with only
a slight modification of the state-of-the-art algorithms: STOMP or SCRIMP++. Empirical results show competitive
results on several data sets for the best motif pair, the similarity search and the motif set discovery problems.

12



Linear-trend normalization for multivariate subsequence similarity search EXTENDED VERSION

104 105 106

time-series length

100

101

102

103

104
se

co
nd

s
Expected quadratic trend
LT-normalized
Z-normalized

Figure 7: Scalability of the matrix profile with the time series length for LT-normalized (blue) and Z-normalized
(orange) distances.
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Figure 8: Amplitude, offset and linear shifts. In blue the original time series, and in orange the shifted time series. The
dot lines represent the transformations.

Appendix A Properties & Limitations of the Z-normalization

Figure 8 illustrates the amplitude, offset and linear shifts; all combinations are possible. In what follows, we show how
the Z-normalized Euclidean distance is invariant to amplitude and offset shifts and discuss its behavior under additive
Gaussian noise and linear shift.

A.1 Z-normalized Euclidean distance, amplitude and offset shifts

The Z-normalized distance can be written to make the invariance to amplitude and offset shifts obvious.

Proposition 5. The Z-normalized distance can be expressed such as for any x ∈ Rw and y ∈ Rw:

dZ(x, y) =
√
w

∥∥∥∥∥ x− µx1

∥x− µx1∥
− y − µy1

∥y − µy1∥

∥∥∥∥∥
where ∥.∥ is the norm associated of the Euclidean inner product.

Proof. It suffice to remark that for any x ∈ Rw, σx =
√
w

−1∥x− µx1∥.

The offset shift is removed by centering the sequence to zero and the amplitude shift is removed by scaling the centered
sequence to the unit norm.

Proposition 6. The Z-normalized distance is invariant to amplitude and offset shifts. For any (x, y) ∈ Rw×Rw,λx, λy >
0 and (βx, βy) ∈ R× R,

dZ(λx(x+ βx1), λy(y + βy1)) = dZ(x, y)

Proof. Application of proposition 5 with the shifted sequences.

Proposition 6 implies that the Z-normalized distance remains identical regardless of any amplitude and offset shifts.
Thus, the matrix profile combined with the Z-normalized distance stores the nearest neighbors of each subsequence up
to any amplitude and offset shifts.

A.2 Z-normalized Euclidean distance and noise

Some properties can also be highlighted in the presence of additive white Gaussian noise.
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Figure 9: Expected Z-normalized distance as a function of the signal-to-noise ratio.

Figure 10: A: Experiment illustrations, the original signal is linearly shifted with an angle θ. B Z-normalized distance
value as a function of the ratio between the linear shift variance and the original sequence variance for different values
of the Pearson correlation between x and t.

Proposition 7. The expected Z-normalized distance between two noisy versions of a sequence depends on the signal-to-
noise ratio. Suppose a sequence x ∈ Rw and two Gaussian vectors ϵ, ϵ′ ∼ N (0, σ2

ϵ Iw) representing the noise. If σx,
µx and σϵ are known, then :

E[d2Z(x+ ϵ, x+ ϵ′)] =
2w2

w − 1

(
1 +

(
σx

σϵ

)2
)−1

Proof. Assuming unbiased estimator for the variance, it suffices to remark that µx+ϵ = µx, σ2
x+ϵ =

w−1
w (σ2

x + σ2
ϵ )

and (2σ2
ϵ )(
∑w

i=1(ϵi − ϵ′i)
2) ∼ χ2(w).

The signal-to-noise ratio is defined by: σ2
x/σ

2
ϵ . The expected distance is maximal for a flat sequence (σx = 0) when

σϵ > 0. In that case, from Proposition 6, it corresponds to the expected distance between two Gaussian vectors of
unit variance and its value is equal to 2w2/(w − 1). Thus, the Z-normalized distance does not detect matches of flat
sequences. When the sequence is close to being flat or the noise is predominant (σ2

x/σ
2
ϵ → 0), it becomes harder for

the distance to detect matches. Figure 9, illustrates this behavior; it expresses the expected distance as a function of
the signal-to-noise ratio. The distance between two noisy versions of a non-flat sequence decreases rapidly as the
signal-to-noise ratio increases. On the contrary, the distance remains constant for a flat sequence.

A.3 Z-normalized Euclidean distance and linear shift

To quantify the effect of linear shift, we evaluate the Z-normalized distance between a sequence x ∈ Rw and a linearly
shifted version x + at where a > 0 and t = (0, . . . , w − 1). We do not add any offset in the linear shift as, from
Proposition 6, the Z-normalized distance is invariant to offset shift. The value of the Z-normalized distance is given in
the following proposition.
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Proposition 8. The squared Z-normalized distance between a sequence x ∈ Rw and a linearly shifted version x+ at,
where a > 0 and t = (0, . . . , w − 1), verifies:

d2Z(x, x+ at) = 2w

1−
1 + (aσt

σx
)ρx,t√

1 + 2(aσt

σx
)ρx,t + (aσt

σx
)2


where ρx,t = cov(x, t)/(σxσt) is the Pearson correlation between x and t.

Proof. Noticing that σ2
x = w−1∥x− µx1∥2 and ρx,t = ⟨x− µx1, t− µt1⟩/(∥x− µx1∥∥t− µt1∥), we have:

⟨x− µx1, x− µx1+ a(t− µt1)⟩ = w(σ2
x + aρx,tσtσx)

As well, we have:
∥x− µx1∥∥x+ at− (µx + aµt)1∥

= wσx

√
σ2
x + 2aρx,tσxσt + a2σ2

t

With ∥x/ ∥x∥ − y/ ∥y∥∥2 = 2 (1− ⟨x, y⟩/∥x∥∥y∥), proposition 8 is verified.

Here, the distance depends on two parameters, the linear-shift-to-sequence ratio (aσt)
2/σ2

x as well as the Pearson
correlation between x and t, ρx,t. The distance is null when the sequence is linear (ρx,t = 1), as in that case, σx = cσt

with c > 0. A linear shift is identical to an amplitude and offset shift in this situation. On the other hand, the distance
increases and converges to the limit

√
2w(1− ρx,t) as the ratio (aσt)

2/σ2
x converges to infinity. The ability of the

Z-normalized distance to detect a match depends on the nature of the sequence. When the sequence is close to being
linear (ρx,t → 1), the distance remains low regardless of the linear-shift-to-sequence ratio. On the contrary, when the
sequence is far from being linear (ρx,t → 0), the match cannot be detected if the variance of the linear shift is not
negligible compared to the sequence variance. Figure 10-A illustrates the experiment and figure 10-B illustrates the
Z-normalized distance between a sequence and a linearly shifted version of it as a function of the variance ratio. The
curves’ steepness at low variance ratios indicates that the Z-normalized distance is not robust to linear shift.

In the case of a noisy time series with a trend, the Z-normalized distance between two almost linear subsequences is low.
Consequently, when the trend is assumed to be locally linear, the LT-normalized distance between two subsequences of
pure trend is low. On the other hand, the distance between two noisy versions of a sequence that are linearly shifted is
high. Therefore, the Z-normalized distance between two motif occurrences may be high in the presence of a trend. The
behavior of the Z-normalized for time series with trend is counter-intuitive; it focuses on subsequences of pure trend or
non-linearly shifted motif occurrences and neglects linearly shifted motif occurrences. This fact motivates our work to
build a distance invariant to linear, offset, and amplitude shifts.

Appendix B Experimental Evaluation : Univariate case

B.1 Datasets

We conducted our experimental evaluation on several labeled datasets constructed from real and synthetic time series.
The datasets are described in more detail in the following paragraphs.

B.1.1 Real-world data

(R-1) mitdb-1 [6, 13]: The MIT-BIH Arrhythmia Database contains 48 half-hour recordings of two-channel
ambulatory electrocardiograms (ECGs) sampled at 360Hz. Cardiologists annotated the heartbeats according
to 19 categories2. We divided all recordings into time series of 1 minute and kept the first channel. We selected
time series of healthy patients (id: 100, 101, 103, 117, 122, according to [18]) that contain only normal
heartbeats and randomly selected 100 time series.

(R-2) mitdb-2: We randomly selected 100 1-minute ECGs from MIT-BIH. The number of repeated patterns varied
between 1 and 4.

(R-3) ptt-ppg [12]: Pule-Transit-Time PPG dataset contains recordings from 22 healthy subjects performing three
physical activities: sit, walk, and run. Each time series includes multiple sensors: photoplethysmogram (PPG),
inertial, pressure and ECG. All recordings were sampled at 500Hz, the heartbeats were annotated by their R
peaks from ECGs. We kept the run activity and the first photoplethysmogram channel. For all subjects, we
divided the recordings into 40-second time series, and we randomly selected 100 time series. This results in a
labelled dataset of 100 univariate time series with a single repeated pattern.

2https://archive.physionet.org/physiobank/annotations.shtml
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Figure 11: Similarity search on: (A) photoplethysmogram, and (B) electrocardiogram. In both cases, top left: the query
subsequence, top right: the time series with the query subsequence location in blue, middle: LT-normalized distance
profile, bottom: Z-normalized distance profile. Due to the trend, some occurrences of the query subsequences are
missed with the Z-normalized distance profile while they are all identifiable with the LT-normalized distance profile.

(R-4) arm-coda [4] is a dataset of 240 multivariate time series collected using 34 Cartesian Optoelectronic Dynamic
Anthropometers (CODA) placed on the upper limbs of 16 healthy subjects, each of whom performed 15
predefined movements such as raising their arms or combing their hair. Each sensor records its position in 3D
space. To construct the dataset, we kept the left (resp. right) forearm sensor of id 29 (resp. 20) and 5 of the
predefined movements: 0,1,4,6,8 (resp. 0,1,4,5,7). We selected the first two occurrences of all movements in
the x and y dimensions. Then, the occurrences of the five movements were randomly placed along the time
axis for each subject, sensor, and dimension. The distance between two consecutive occurrences is sampled
uniformly over [50, 450]. A Gaussian noise with a signal-to-noise ratio of 0.01 was added to all time series.
This resulted in a dataset of 64 univariate time series.

B.1.2 Synthetic data

We have generated one dataset per data mining task with the following scenarios:

(S-1) m-pair: There is 1 pattern of length 100 that repeats twice.

(S-2) s-search: There is 1 pattern of length 100 that repeats 50 times.

(S-3) m-set: There are 5 patterns of length 100. For each pattern, the number of occurrences is sampled uniformly
between 2 and 10.

All time series are generated using the same protocol: occurrences of the N repeated patterns are randomly placed on
top of a random walk, and Gaussian noise is added to the resulting time series. In all scenarios, the amplitude of the
Gaussian noise is set to 0.1, and given a fundamental frequency of 4Hz, a pattern is generated as the sum of the sine
function of the hundred first harmonics, with the phases and the amplitudes are uniformly sampled over [−π, π] and
[−1, 1]. For the motif pair dataset, we generated 200 time series for each random walk variance step between 0 and
0.5 by steps of 0.01, and the interval between the occurrences is uniformly sampled over [100, 900]. For the similarity
search and the motif set datasets, we generated 100 time series such that the amplitude of the random walk is set to 0.2,
and the interval between two consecutive occurrences is uniformly sampled over [10, 90].

B.2 Similarity search

In this experiment, we evaluated the performance of LT-normalized and Z-normalized distances in solving the similarity
search problem.

The similarity search problem [9] consists in identifying all occurrences of a query sequence in a time series. A classical
approach [14] first computes the Z-normalized distance profile between a query sequence and a time series. From
the distance profile, the starting locations of the occurrences are identified with local minima below a given threshold.
This approach can be extended to the LT-normalized distance, and we used this resolution scheme to evaluate the
performance of the two distances.

We performed our experiment on datasets where the time series have one pattern that repeats multiple times: s-search (S-
2), mitdb-1 (R-1), and ptt-ppg (R-3). Figure 11 illustrates the resolution of the similarity search problem on an ECG
(A) and a PPG (B). In both cases, the top right plot shows the query sequence corresponding to the repeated pattern’s
first occurrence. The top right plot shows the raw signal, and the plots below show respectively the LT-normalized
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Figure 12: ROC curves of the similarity search problem for LT-normalized (orange) and Z-normalized (blue) distances
on the datasets: (A) s-search, (B) ptt-ppg, and (C) mitdb-1. The LT-normalized distance performs better than the
Z-normalized distance.

and Z-normalized distance profiles. For both time series, the distance profiles are minimal at the starting locations
of occurrences of the query sequences. However, the Z-normalized distance profile is sensitive to the trend, and the
distance remains high for some occurrences. On the contrary, the trend less affects the LT-normalised distance profile,
and the distance remains consistently low at the starting location of occurrences. The LT-normalized distance is better
suited for the similarity search on these two time series.

We computed ROC curves for each distance and dataset according to the procedure described in [16]. We counted a
predicted occurrence as valid if it overlapped with a real occurrence by at least 75%. The results are shown in Figure 12.
On average, the LT-normalized distance outperformed the Z-normalized distance as it had a higher AUC score across
all datasets. It is also worth noticing that the ROC curves of the LT-normalized distance are consistently above those
of the Z-normalized distance. Indeed, the LT-normalized distance is a generalization of the Z-normalized distance to
a broader class of deformations. As a result, the LT-normalized distance profiles are more robust to the deformation
induced by the trend. Therefore, the number of true occurrences detected with the LT-normalized distance is at least as
good as that of the Z-normalized distance.

B.3 Motif set discovery

In this experiment, we evaluated the performance of LT-normalized and Z-normalized distances in solving the motif set
discovery problem.

The motif set discovery problem [11] consists in identifying all occurrences of each repeated pattern present in a time
series. A heuristic based on the matrix profile has been proposed to solve this problem [31, 2]. This algorithm can be
extended to the LT-normalized distance, and we used it to evaluate the performance of both distances. We also added
two baselines, a matrix profile with the Euclidean distance and a second matrix profile with the Z-normalized distance
where time-series are preprocessed using a trend removal algorithm: A Seasonal-Trend Decomposition Procedure
Based on LOESS (STL) [3]. In terms of settings, the algorithm requires the number of sets to discover, which we
assumed to be known, a subsequence similarity ratio, which we set to 3, and a subsequence length, which we set to be
the average motif length for each dataset. The STL algorithm period is also set to the average motif length.

We ran the experiment on all datasets except the m-pair, as its time series contains a single motif that repeats twice. We
evaluated the performance with the event-based precision, recall, and f1-score [23]. We counted a pair of predicted/real
occurrences as valid for the precision (resp. recall) metric if the length of their intersection is greater than 50% of
the length of the predicted (resp. real) occurrence. We used the Hungarian matching algorithm [8, 19] to match the
predicted motif sets and occurrences with the real ones.

Experimental results are shown in Table 2. On all datasets except ptt-ppg (R-3), the ranking based on the f1-score
remains identical: (1) LT, (2) STL+Z, (3) Z, and (4) Euc. On ptt-ppg, STL+Z is first, and LT is second. STL+Z algorithm
first removes the trend with the STL algorithm before applying the motif discovery algorithm with the Z-normalized.
LT and STL+Z are the best performers, meaning that removing deformations induced by trends is helpful for motif
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Table 2: Motif Set Discovery. Euclidean (Euc), Z-normalized (Z), LT-normalized (LT), Trend removal & Z-normalized
(STL+Z).

algorithm Euc LT STL+Z Z
dataset metric

single (S-2) fscore 0.22 0.83 0.81 0.69
precision 0.84 1.00 0.97 0.98
recall 0.13 0.72 0.70 0.54

fixed (S-3) fscore 0.34 0.59 0.57 0.56
precision 0.33 0.54 0.52 0.51
recall 0.41 0.69 0.66 0.66

mitdb1 (R-1) fscore 0.40 0.57 0.55 0.53
precision 0.99 0.98 0.98 0.97
recall 0.26 0.42 0.40 0.39

mitdb2 (R-2) fscore 0.14 0.43 0.43 0.39
precision 0.65 0.73 0.72 0.72
recall 0.10 0.36 0.33 0.32

ptt-ppg (R-3) fscore 0.23 0.54 0.62 0.47
precision 0.95 0.97 0.97 0.98
recall 0.13 0.39 0.47 0.33

arm-coda (R-4) fscore 0.14 0.22 0.19 0.19
precision 0.15 0.19 0.18 0.18
recall 0.22 0.35 0.31 0.33

discovery on these datasets. Additionally, LT performs better than STL+Z on most datasets; it validates the assumption
that the trend creates deformations that are locally similar to linear shifts on this specific task.
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