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Abstract—In this article, we propose a new algorithm for
unsupervised anomaly detection in univariate time series, based
on topological data analysis. It relies on delay embeddings and
on the extraction of persistent cycles from the 1-dimensional
persistent homology module constructed from the distance to
measure Rips filtration. This filtration makes it possible to
identify 1-cycles (i.e. loops) corresponding to recurrent patterns
by leveraging density information. Points in those cycles are
considered as normal, and the algorithm can then assign an
anomaly score to any point which is its distance to the normal
set. In this paper, we describe the algorithm and test it on several
real-world datasets, showing that it is competitive with state-of-
the-art anomaly detection methods.

Index Terms—Anomaly detection, topological data analysis,
time series analysis

I. INTRODUCTION

Anomaly detection in time series is an important problem
in data science, with applications in many fields such as
healthcare and engineering. A time series is a sequence of
real numbers x = (xi)1≤i≤n (n will always denote the length
of the time series). In the context of anomaly detection, x is
assumed to be composed of a normal behavior and anomalies,
i.e. points or sequences of points that differ from the normal
behavior. More precisely, in several application contexts such
as industrial monitoring or healthcare, the time series is
usually assumed to be composed of some repetitive/frequent
patterns, possibly of varying lengths (think for instance of
an heartbeat in ECG data) among which some occur a large
number of times (the normal ones) and some have significantly
fewer occurrences (the abnormal ones) : see Figure 1 for an
illustration.

Over the past years, several unsupervised anomaly detection
algorithms have been developed from different research areas
(see [1] and [2] for a comprehensive review). Among them,
some rely on a model and use the prediction error as an
anomaly detector and some are based of clustering techniques
applied on the subsequences in order to detect outliers. For
instance, LOF [3] transforms the time series into a point cloud
and studies the density of each point to assess whether or
not they correspond to normal or abnormal behaviors. The
fact that the patterns can have different lengths, that there
can be multiple normal patterns and multiple occurrences of
an anomaly, and noise make it difficult to build a universal
anomaly detection algorithm [1]. The main differences be-

Fig. 1. An example time series, with normal patterns in green and red (and
the null parts in dark blue) and three abnormal ones (in blue, orange and
purple), with Gaussian noise of amplitude 0.1.

tween the approaches actually lie in the implied definition
given to the notion of normality.

Topological data analysis (TDA), and more specifically
persistent homology [4] is a set of techniques derived from
algebraic topology, which allows to analyze the structure of
data by constructing a sequence of simplicial complexes (a
filtration). The persistence diagram sums up when connected
components, loops or higher-dimensional simplices appear and
disappear when going through the filtration. TDA has been
applied to many fields including time series analysis. It is
particularly adapted to study structured data such as time series
with a periodic behavior [5], [6], [7], [8], and methods from
TDA benefit from stability theorems that guarantee a certain
robustness to noise [9], [10].

In the case of periodic functions, the importance of 1-
dimensional persistent homology (the study of loops in point
clouds) was theoretically studied in [5] and it was applied
to time series in [6] by transforming the data into a point
cloud and considering the most important loop. By extension,
1-dimensional persistent homology is also relevant to study
time series with repetitive patterns. Our method consists in
transforming the time series into a point cloud and extracting
1-cycles (i.e. loops) that are considered to correspond to
normal patterns of the time series. Those cycles are identified
on the persistence diagram because density information is used
to construct the filtration. Once ’normal cycles’ have been
extracted, an anomaly score is defined for each point of the
embedding as its distance to the normal cycles.

Section II gives the required background on TDA to un-
derstand the algorithm described in Section III. We show the
experimental results and discuss them in Section IV.



II. TOPOLOGICAL DATA ANALYSIS BACKGROUND

In this section, we introduce the objects from topological
data analysis (TDA) (mostly from [10]) that will be used in the
rest of the paper. See [4], [10] for more complete background.

A. Simplicial homology

Definition 1. A k-simplex on a set X ⊂ Rd is an unordered
tuple σ = [x0, ..., xk] of k + 1 distinct elements of X . The
elements x0, ..., xk are called the vertices of σ. If each vertex
of a simplex ρ is also a vertex of σ, then ρ is called a face of
σ. A simplicial complex K is a set of simplices such that any
face of a simplex of K is a simplex of K.

Definition 2. A filtration of a simplicial complex K is a family
of simplicial complexes (Kα)α≥0 such that K0 = ∅, α <
α′ ⇒ Kα ⊂ Kα′ and

⋃
α≥0 Kα = K. The filtration value of

a simplex σ is the lowest α such that σ ∈ Kα.

This definition is useful for theory, but in practice the
number of simplices is finite, in which case we will only use
a finite set of indices αi such that ∅ = Kα0 ⊂ Kα1 ⊂ · · · ⊂
KαN = K and αi ≤ α < αi+1 ⇒ Kαi = Kα. Without loss
of generality, we can also assume that for all i there exists a
simplex σi+1 ∈ K such that Kαi+1 = Kαi ∪ {σi+1}.

Let K be a simplicial complex on a set X ⊂ Rd, F = Z/2Z
and 0 ≤ k ≤ d.

Definition 3. The space Ck(K) of k-chains is defined as the
set of formal sums of k-simplices of K with coefficients in F,
that is to say, if all the k-simplices of K are σ1, . . . , σnk

, all
the elements of the form: c =

∑nk

i=1 aiσi with ai ∈ F.

Ck(K) is a vector space whose addition and scalar multipli-
cation are naturally defined.

Definition 4. Let σ = [v1, . . . , vk] be a k-simplex with vertices
v1, . . . , vk, and [v1, . . . , v̂i, . . . , vk] be the (k − 1)-simplex
spanned by those points minus vi. The boundary operator ∂
is defined as:

∂ :

{
Ck(K) −→ Ck−1(K)

σ 7−→ ∂σ =
∑k

i=1(−1)i[v1, . . . , v̂i, . . . , vk].

We have the following sequence of linear maps:

{0} → Cd(K)
∂→ Cd−1(K)

∂→ . . .
∂→ C0(K)

∂→ {0}.

They satisfy ∂ ◦ ∂ = 0 : we call such a sequence of maps a
chain complex. This constitutes the setup for homology. We
can now define cycles, boundaries and homology groups.

Definition 5. Let ∂k denote the boundary operator ∂ :
Ck(K)→ Ck−1(K). We define the set Zk(K) of k-cycles of
K as Zk(K) = Ker(∂k) and the set Bk(K) of k-boundaries
of K as Bk(K) = Im(∂k).
We have Bk(K) ⊂ Zk(K) ⊂ Ck(K) so we can define the kth

homology group as: Hk(K) = Zk(K)/Bk(K).

The elements of Hk(K) represent the of k-dimensional
”holes”. For example, elements of H1(K) are loops.

B. Persistent homology

The main idea of TDA is to build a filtration on top
of the data and study how the structure of the simplicial
complexes evolves while increasing the filtration parameter
α using persistent homology.

Let (Kαi)0≤i≤N be a filtration such that for each index i,
Kαi+1 = Kαi∪{σi+1}. We call Ci

k, Z
i
k, B

i
k, H

i
k the respective

spaces of k-chains, k-cycles, k-boundaries and kth homology
group of Ki. The goal is to follow the evolution of Hi

k as
i increases. It can be shown [4] that when a k-simplex σi+1

(k > 0) is added, it either creates a new homology class in
Hi+1

k (i.e. a new k-cycle that is independent of those of Hi
k) or

it closes a k− 1-dimensional hole of Hi−1
k−1, so Hi

k−1 has one
less homology class than Hi−1

k−1, in that case we say that σi+1

killed a homology class (by convention, we always consider
that when two classes merge, the younger class gets killed).
If k = 0, each new vertex creates a homology class in H0.

The final result of persistent homology is the set of all
so-called persistent pairs (σl(j), σj) such that for each j,
σl(j) creates a component and σj kills it. We say that the
persistence of such a pair is j − l(j) − 1. The algorithms
to compute them are described in detail in [4]. The k-
dimensional persistence diagram is the set of points of
coordinates (αl(j), αj) such that σl(j) is a k-simplex (counted
with multiplicity). A persistence diagram is showed on Figure
3.

III. METHOD

In this section, we describe our algorithm for unsupervised
anomaly detection. The algorithms has four main steps that
are described below: transform the time series into a delay
embedding, compute the Distance-to-measure (DTM) Rips
filtration, extract the normal 1-cycles, compute the anomaly
scores.

The idea behind our algorithm is that, if we consider a time
series such as the one from Figure 1, each pattern should
correspond to at least one loop in the embedded space (see
Figure 2) that can be detected using 1-dimensional persistent
homology. As normal patterns have more occurrences than
abnormal ones, their points should have a higher density and
thus and thus a lower filtration value. This would make it
possible to discriminate the corresponding 1-cycles on the
persistence diagram, as their birth date will be lower. Our set
of normal points is then the set of 1-cycles detected as normal.

A. Delay embeddings

A delay embedding is a way of transforming a time series
into a point cloud of chosen dimension d. We will study
the structure of this point cloud using the tools from TDA
described in Section II to detect important loops.

Definition 6. The delay embedding of a signal x with dimen-
sion d ≥ 2 and delay τ ∈ N is the following point cloud in
Rd: Xd,τ = ((xi,xi+τ , . . . ,xi+(d−1)τ ))1≤i≤n−(d−1)τ .

In what follows, Xd,τ will always denote the delay embed-
ding associated to x with dimension d and delay τ : subscript



Fig. 2. Delay embedding of the time series from Figure 1 (PCA in 3D), with
d = 10 and τ = 4. Colors correspond to the colors in Figure 1.

terms will be omitted where the context is obvious. Figure 2
shows a delay embedding of the time series from Figure 1.

B. Distance-to-measure (DTM) Rips filtration

Here, we describe the distance-to-measure (DTM) Rips
filtration used in our algorithm. See [10] for a more general
introduction and stability results.

Let X be a finite subset of Rd (a point cloud) and f : X →
R+ . For all x ∈ X and α ∈ R+, we define a radius rx(α)
as:

rx(α) =

{
−∞ if α < f(x)

α− f(x) otherwise

Now, let us denote by B̄f (x, α) the closed Euclidean ball
B̄(x, rx(α)) (by convention, a ball is empty if its radius is
−∞).

Definition 7. With the above notations, the weighted Rips
filtration with parameters (X, f), Rips[X, f ] is the filtered
simplicial complex such that each vertex (or 0-simplex) x ∈ X
has filtration value f(x), and such that for 2 ≤ i ≤ d + 1:
[x1, .., xi] ∈ Rips[X, f ]α ⇐⇒ ∀(j, k), B̄f (xj , α) ∩
B̄f (xk, α) ̸= ∅.

As we only look at intersections of pairs of balls, Rips
filtrations are characterized by the filtration values of 0 and
1 simplices. The following proposition from [10] gives those
values.

Proposition 1. Let x, y ∈ X . The filtration value of [x]
in Rips[X, f ] is f(x), and the filtration value of [x, y] in
Rips[X, f ] is:{

max(f(x), f(y)) if ||x− y|| < |f(x)− f(y)|
||x−y||+f(x)+f(y)

2 otherwise.

Distance-to-measure (DTM) functions were introduced in
[10] to make weighted filtrations robust to outliers.

Definition 8. If X is a finite subset of Rd, we denote by µX

the empirical measure on X . Let q ≤ Card(X) ∈ N and
m = q

Card(X) . The DTM dµX ,m is defined as:

∀x ∈ Rd, dµX ,m(x) =

√√√√1

q

q∑
i=1

||x−NN (i)(x)||2

where NN (i)(x) is the ith nearest neighbor to x.

The DTM Rips filtration with parameter m is finally defined
as Rips[X, dµX ,m].

Our algorithm computes the DTM filtration on a delay
embedding Xd,τ and the corresponding persistence diagram,
and extracts 1-cycles. As point clouds can be very large
(they have n − (d − 1)τ points), those steps can be too
long for the algorithm to be used in practice (O(n3) in the
worst case for 1D persistent homology and cycle extraction
[4], [11]). To solve this problem, we compute persistent
homology on a subsampled set X̃d,τ of Xd,τ , so the filtra-
tion is Rips[X̃d,τ , dµXd,τ

,m]. Note that the filtration values
of points in X̃d,τ are their original values from dµXd,τ

,m,
which insures that the subsampling does not change the fact
that Rips[X̃d,τ , dµXd,τ

,m] is a filtration. This is important to
keep the density information from the whole point cloud
when subsampling (otherwise, the effect of the number of
occurrences of normal points would disappear). To compute
X̃d,τ , we choose a number of points npoints and use a greedy
method: we start with a random point and, until we have
npoints points, add the furthest one to the set of already chosen
points.

C. Extraction of normal 1-cycles

Here, we describe the step that consists on identifying
normal 1-cycles by reading the persistence diagram, and
extracting those cycles.

Let D be the persistence diagram corresponding to the
filtration Rips[X̃d,τ , dµXd,τ

,m]. We propose an algorithm that
relies on the choice of two thresholds: one on persistence (we
focus on the most persistent points, which describe important
structures), and one on the birth date (among those points,
we consider those with a birth date above the cycle to be
abnormal). To choose the persistence threshold, we sort the
persistence of all points by decreasing order in a list l, find
the index i such that l[i]− l[i+1] is maximal, and keep points
corresponding to indices from 1 to i + nadd, where nadd is
a parameter. We will use nadd = 2 in practice, to keep at
least three points and thus to be able to compare at least two
differences in birth dates. Figure 3 illustrates our algorithm
applied to the time series from Figure 1 (with delay embedding
from Figure 2). We used q = 10, nadd = 2 and npoints = 200.
The persistence threshold is represented as a line parallel to
the diagonal as the persistence of a point is proportional to
its distance to the diagonal. Here, the persistence threshold on
the diagram is around 0.5 (5 points are above: 3 are above the
largest gap, and we add two more).



Fig. 3. Extraction of normal 1-cycles step. Left: persistence diagram of the
DTM-filtration of the delay embedding from Figure 2, with persistence and
birth date thresholds in blue. Right: subsampling of the delay embedding with
200 points, and cycles detected as normal (in green and red).

We choose the birth date threshold as follows: we sort the
points that are above the persistence threshold by increasing
birth date and add the point with minimal birth date to the
list, then keep all the points until the maximal difference is
reached and remove the one we added. If the point of maximal
persistence is not kept, add all points until it is (we assume
that the most persistent cycle should be normal, due to the
DTM filtration). On the example from Figure 3, the birth date
threshold is around 2.5, so the two points in the upper left
corner are detected as normal (among the 5 most persistent
ones).

If there are no 1-cycles in D, we take an arbitrary ”cycle” as
normal. In this case, one should look for different parameters
d and τ to make the point cloud less dense.

The cycle extraction step takes as input the list of normal
points on the diagram D and the filtration, and outputs a
list of cycles C = (c1, . . . , cncycles

), each one representing
the homology class of a point from the list (a cycle is a
list of points). We use the matrix reduction algorithm from
[11], which consists in column additions on the matrix of the
boundary operator on the simplices of the filtration. The idea
is to form groups of 1-simplices (edges) that form a cycle with
the desired birth and death dates. The green and red cycles on
the point cloud X̃d,τ from Figure 3 are the two normal cycles
extracted with this method, corresponding to the two points
evoked above (notice that we found the green and red cycle
from Figure 2).

D. Anomaly scores

Once the list C of normal cycles has been computed, an
anomaly score is given to each point x ∈ Xd,τ , which is its
Euclidean distance to C: d(x,C).

Finally, we get an anomaly score for xi by averaging the
scores of all points in Xd,τ of which xi is a coordinate:
Score(x)i ← mean({d(Xj , C) | max(0, i − (d − 1)τ) ≤ j ≤
i}).

One can choose a threshold to the anomaly score to get a
binary answer. Typically, one can chose to keep score only
above a certain quantile. In section IV, we will compare
algorithms using the AUC-ROC curve of each anomaly score
not to be biased by an arbitrary choice of threshold. We do not
give a specific method to choose the threshold, as it depends
on the application.

Fig. 4. Anomaly score step. Top left: signal from Figure 1 with anomalies
in red. Bottom: Anomaly score obtained with our algorithm (distance to the
cycles from Figure 3, normalized). Top right: ROC curve (AUC = 0.98).

Figure 4 shows the results and ROC curve of our algorithm
applied to the signal from Figure 1 (with delay embedding
from Figure 2 and normal cycles from Figure 3). The two cy-
cles corresponding to the normal patterns have been extracted
so those pattern have an anomaly score close to zero.

IV. RESULTS AND DISCUSSION

This section shows the result obtained with our algorithm on
the 18 public datasets provided by the TSB-UAD benchmark
suite [1], for a total of 1980 univariate time series with labeled
anomalies.

For each time series, we compute the area under the ROC
curve (AUC-ROC) obtained by looking at all the possible
thresholds on the anomaly score. The same method is applied
to 12 anomaly detection algorithms in [1]. Using the AUC-
ROC, the evaluation does not depend on the choice of a
threshold for each algorithm. Table III-D shows the average
AUC-ROC obtained on each dataset with our method (TDA)
with the above parameters, and the results of the TSB-UAD
benchmark [1]. Figure 5 shows the critical diagrams compar-
ing the average rank of each method using the Friedman test
followed by the Wilcoxon or Nemenyi test with α = 0.05.

The parameters are chosen the same way for all time
series. We estimate a period L for the time series using the
first maximum of the autocorrelation function (we used the
find length function from TSB-UAD, which was used for
all other methods using a delay embedding). We empirically
chose τ = 6 (in practice, if τ is too small, the embedding
will stay close to the line spanned by (1, . . . , 1) and it will be
harder to detect cycles). In [5] Perea and Harer show that in
the case of trigonometric functions, dτ should be a multiple of
the period to maximize persistence in 1D homology. With this
in mind, we empirically set d = max(40,min(120, ⌊L3 ⌋)). We
chose q = ⌊nL⌋ as this value would approximate the number
of normal occurrences in the case where there is one normal
atom. We take nadd = 2 for the reasons explained in section
III-C and npoints = 400 for computation time reasons.

The above results show that our method is competitive
with the state-of-the-art in anomaly detection on 18 standard
datasets. It has the best score on 4 of them, the best average



TDA IForest IForest1 LOF MP PCA NORMA HBOS POLY OCSVM AE CNN LSTM
Dodgers 0.79 0.79 0.64 0.54 0.52 0.77 0.79 0.3 0.69 0.64 0.73 0.68 0.39

ECG 0.88 0.75 0.61 0.56 0.58 0.71 0.95 0.68 0.70 0.64 0.73 0.52 0.54
IOPS 0.82 0.54 0.78 0.50 0.72 0.74 0.76 0.64 0.68 0.71 0.63 0.61 0.61

MGAB 0.58 0.57 0.58 0.96 0.91 0.54 0.55 0.54 0.51 0.52 0.71 0.58 0.56
NAB 0.76 0.45 0.56 0.48 0.49 0.69 0.58 0.68 0.75 0.61 0.54 0.52 0.50

NASA-MSL 0.64 0.57 0.69 0.52 0.52 0.75 0.55 0.77 0.81 0.64 0.70 0.57 0.57
NASA-SMAP 0.83 0.72 0.68 0.68 0.62 0.74 0.80 0.77 0.80 0.65 0.77 0.68 0.64
SensorScope 0.52 0.56 0.56 0.55 0.50 0.54 0.59 0.56 0.62 0.51 0.52 0.52 0.53

YAHOO 0.64 0.62 0.81 0.86 0.86 0.57 0.92 0.57 0.76 0.50 0.79 0.96 0.94
KDD21 0.75 0.65 0.57 0.78 0.90 0.58 0.88 0.60 0.58 0.60 0.79 0.74 0.66
Daphnet 0.70 0.74 0.68 0.78 0.44 0.69 0.46 0.69 0.77 0.45 0.44 0.47 0.44

GHL 0.86 0.94 0.94 0.54 0.42 0.91 0.64 0.92 0.76 0.45 0.63 0.47 0.47
Genesis 0.84 0.78 0.66 0.68 0.35 0.85 0.6 0.59 0.87 0.70 0.72 0.73 0.53
MITDB 0.71 0.70 0.61 0.61 0.69 0.67 0.86 0.70 0.68 0.65 0.80 0.58 0.51

OPP 0.48 0.49 0.52 0.45 0.82 0.52 0.65 0.54 0.28 0.38 0.70 0.47 0.57
Occupancy 0.53 0.86 0.78 0.53 0.32 0.78 0.53 0.89 0.80 0.66 0.69 0.79 0.71

SMD 0.77 0.85 0.73 0.69 0.51 0.80 0.61 0.77 0.87 0.61 0.63 0.61 0.58
SVDB 0.77 0.72 0.58 0.59 0.74 0.68 0.92 0.71 0.67 0.68 0.79 0.58 0.55

TABLE I
AVERAGE AUC-ROC ON EACH DATASET.

Fig. 5. Critical diagrams for α = 0.05. Top: Friedman test + Wilcoxon test.
Bottom: Friedman test + Nemenyi test.

rank (though the difference with the best methods is not
significant as shown on Figure 5), and it is in the top 5 on 13
datasets. Our algorithm was built for a certain model of time
series, with repeating patterns, so it should be used to study
data that present such a behavior.

One could argue that using 1-cycles is useless because
points could be studied individually using their filtration value
(i.e. the birth dates on the 0-dimensional persistence diagram)
which is the opposite of a measure of the density of Xd,τ

around each point. This approach would then be similar to the
LOF algorithm [3]. However, in practice, the filtration values
can take a range of values due to noise or differences between
occurrences of the same pattern and choosing a threshold
would be hard. Moreover, an abnormal sequence with slow
variations will give dense points in Xd,τ which would make
the 0D approach or LOF fail. Considering 1D persistent
homology and considering only cycles with a high persistence
makes the choice of normal points easier by focusing on a few
cycles corresponding to relevant components of Xd,τ . It also
makes it possible to eliminate sequences with slow variations
(because the corresponding cycles have low persistence).

V. CONCLUSION

This paper shows how tools from topological data analysis
can be used to detect structure in time series, and how the
choice of a relevant filtration can highlight the desired struc-
ture (in this case, normal cycles corresponding to repetitive
patterns).

The DTM filtration makes it possible to compute persis-
tent homology on a subset of points while keeping density
information from the whole point cloud, which makes the
algorithm usable in practice on large datasets. An improvement
perspective could be to use more efficient algorithms or
smaller filtrations to be able to consider larger point clouds.
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