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Abstract—Learning graphs of Granger causalities from multi-
variate time series is essential for understanding relationships be-
tween several entities. This approach has found wide applications
in various domains such as economics, finance, neurosciences,
genetic etc. However, accurately estimating Granger causality
graphs in high-dimensional settings with limited samples remains
a challenge. In this study, we introduce a model that leverages
prior knowledge in the form of a noisy graph to learn a graph
of Granger causalities assuming sparsity. We demonstrate the
convergence of our fitting algorithm and present experimental
results on synthetic and real-world datasets to show the advan-
tages of our method over existing alternatives, in particular in
settings with limited available samples.

Index Terms—Graph Learning, Granger causality, Vector
Autoregressive Models

I. INTRODUCTION

Multivariate time series analysis plays a crucial role in un-
derstanding and forecasting real-world phenomena involving
multiple interdependent variables. Within such complex sys-
tems, Granger causality [1] graph has emerged as a powerful
tool to uncover directional relationships and causal influences.
It has therefore been the basis for a wide range of applica-
tions in fields such as economics [2], neuroscience [3], gene
regulation [4]], protein-protein interactions [S]] etc.

In order to learn a Granger causality graph, a standard
approach is to estimate the parameters of a Vector AutoRegres-
sive model (VAR) from an observed multivariate time series
[6]]. However, this is a non-trivial problem, especially in a
high-dimensional context with few samples. To address this
challenge, several regularization methods have been proposed,
from both a frequentist and a Bayesian point of view. From the
frequentist perspective, Basu and Michailidis [[7] investigated
a Group Lasso penalty and different variants of sparsity-
inducing penalties were also presented in [8], [9], and [10].
From the Bayesian perspective, several prior distributions on
the parameters of the VAR were investigated. These include
Gaussian prior [11], Gaussian-inverted Wishart prior [12],
or hierarchical normal priors [13]. However, as underlined
in [14], the resulting Granger causality graph can be fairly
dense or, on the contrary, very disconnected, which can be in
contradiction with scientific background knowledge.

To address this issue, it is possible to take into account
additional information summarized in the form of a knowledge
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graph. For example, in the context of gene network analysis,
genes may be organized into distinct pathways, and it is
often observed that connections within a pathway are more
frequent than connections between pathways [15]. Thus, the
authors of [4] ensure that the learned Granger graph follows
this prior knowledge by adding a particular penalization term
to the optimization problem. Another approach studied in
[14] is to assume a tree-rank prior distribution, forcing the
learned Granger graph to be a subgraph of the union of
spanning trees. Another important example is when dealing
with signals driven by a physical process and recorded by
sensors at several locations. In this case, the Euclidean k-NN
graph can make sense and is often used in the Graph Signal
Processing community [16] as a prior in order to perform
filtering, denoising or prediction. Nevertheless, note that, most
methods in the literature presuppose perfect knowledge of
prior data, which is unrealistic.

Contributions: In this paper, we introduce a VAR model
that incorporates prior knowledge about the relationship be-
tween time series in the form of a graph. Unlike existing
methods, since the prior graph is rarely accurate, we assume
in the model that this prior is noisy. To estimate the associated
graph of Granger causalities, we compute the MAP using
a 2 block coordinate descent algorithm that is proven to
converge to a set of stationary points. Finally, we perform
experiments on both synthetic and real-world data showing
better performances than state-of-the-art models in settings
with few samples across several levels of noise.

II. PRELIMINARIES

A VAR model of order d > 1, denoted VAR(d), explains the
values of a multivariate time series at time ¢ using a linear
combination of its d previously observed values. Formally,
given d matrices (C7)9_; in RP*P, a VAR(d) is defined at
each time t = 1,2,... by:

d
X[ =Y CX[t—7]+e[t], (1)

T=1
where X[t] = (X1[t], ..., X,[t]) is a random p-dimensional
time series and [t] ~ N'(0,0%1,), ox > 0, is some innova-
tion noise. In practice, VAR models are often used to analyze



certain aspects of the relationships between several variables of
interest. Indeed, it can be shown that the matrices {C7}¢_; in
Equation capture specific temporal dependencies between
the p time series and are associated with the notion of Network
Granger causality (NGC).

Definition 1 (Network Granger Causality). For 4,7 in [1,p],
the i-th time series X; := (X;[t])1=1,2,... is called a Granger
cause of X; = (Xj[t])i=1,2,... if at least one element of
{Cz‘T,j |7=1, ...,d} is non zero.

NGC can be seen as an extension of the Granger causality
between 2 variables to p variables. Note that, like for the
case p = 2, NGC does not necessarily capture true causal
relationships, but rather indicates the power of prediction
of some variables to others. Nevertheless, NGC remains a
powerful tool for understanding interactions between random
time series, and its estimation is of practical interest.

III. MODELING FRAMEWORK

For simplicity, in the following, we only consider VAR(1)
models i.e. d = 1 and we only need to learn one matrix
C. Note that this assumption is not limiting since a VAR(d)
model can always be written as a VAR(1) model [6] so our
method is still applicable in the general case with slight
modifications. In general, estimating the parameters of the
VAR model , i.e. the matrix C, requires the observation
of a long stationary realisation of the p-dimensional time
series. However, in many applications, we only observe short
replicas of the time series and additional information must be
incorporated into the model to obtain accurate estimates.

A. Model

In this section, we propose to leverage prior knowledge on
the structure of the matrix C taking the form of a graph.
More specifically, we assume that the coefficients {C; ; }”
are drawn from independent centered Laplace distribution
with variances equal to the adjacency matrix coefficients of
a given graph { A7 ;}. The choice of a Laplacian distribution
is motivated by the will to learn a sparse graph. Thus, if A7,
is small, the value of the associated coefficient C; ; is close to
zero (meaning that there is no Granger causality between the
two time series). However, since the prior information is rarely
accurate for most applications, we will assume that we do not
know the true matrix A* but rather a noisy version denoted
APror This assumption will lead to a more robust model that
can refine the prior over iterations.

Formally, given an adjacency matrix A*, we consider the
statistical model defined by:

A?iijor NN(A;],Ui) , OA > 0 ) Za] = 17 - D

C;; ~ Laplace(0,A7;) , i,j=1,..,p 2)
X[t]|C* ~N(C* X[t — 1],0%1I,) , ox >0.

B. Estimation of the parameters

Given N independent trajectories Xi[1 : ¢],..., Xn[1 : ]

drawn from the statistical model and a matrix AP, we

want to estimate both C* (VAR parameters) and A* (denoised
adjacency matrix) by computing the Maximum a Posteriori
(MAP):

~ o~

A,C =argmax L(A,C | {X;[1:¢]},, APy (3)
A,C
subject to A >0, A € S,(R),

where L(-) is the likelihood function and S, (R) is the set of
symmetric matrices. Recall that we consider a VAR(1) model,
hence t = 2.

Remark 1. We impose A € S,(R) because this variable
represents the adjacency matrix of the denoised undirected
prior graph knowledge. Keeping A symmetric also allows
us to impose spectral or adjacency constraints and use the
framework introduced in [17]

Proposition 1. Computing the MAP leads to the following
optimization problem:

N

1

S IXalt] - CX [t — 13
n=1

min
A, C
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subject to Ai,j >0, Ai,j = Aj,i , 1<i<i<p @)

where \ and v are hyper parameters. Note that we only opti-
mize over the upper diagonal values and we set A;; = A, ;
for i < j to address the symmetry constraint of Problem 3]

Proof. (Sketch) The likelihood of the posterior distribution is
calculated by a direct application of the Bayes’ formula. [J

Equation in Proposition (T)) contains 3 terms:

1
D — || X[t] - CX]t — 1]||§ corresponds to the Least Square

problem objective: this term al- lows to measure the differ-
ence between the original signals and their reconstructions.
Recall that we only consider in this section VAR(1) model,
hence ¢ :C2.

) T Cijl +1Cial 3
1<i<isp  Aig 1<i<j<p
nalization term that takes into account the graph prior
knowledge. This penalization is inspired by the one used
in Adaptive Lasso models, where the terms 1/ A, j act as
weights. The higher the A, ;, the closer ¢ and j are in
the graph, and the lower the penalty for C; ; and C; ;. It
should be noted that the additional term composed of the
sum of log is a normalization term linked to the associated
statistical model (2).

3) ||A - Apri‘”Hi is a regularization term to take into account
that AP™" is not necessarily the optimal prior knowledge
and could therefore be further refined. Actually, adding this
term in the optimization problem is equivalent to imposing

log(2A,; ;) is the pe-



a normal prior distribution to the coefficient of A;; (see
(@)). In practice, this term allows to increases the robustness
to the prior knowledge noise.

C. A-AdaptiveLasso (AALasso)

The function to minimize in Proposition () is not convex in
(A, C) since it is not convex in A. However, as the function
is convex in C (adaptive lasso problem) and we have a
closed form for the roots of the derivative in A, alternating
minimization is a good way to solve this problem.

a) C update: For fixed A, the optimization problem (@)
with respect to C is:

2
mln —Z HX(”) X(")[ ]H
2
C; C,;
I Z | y|+| J, | )
1<i<j<p ’]

. From Eq. (3), we see that the optimization step in C is
an Adaptive Lasso problem with weights equal to 1/A,; ;
[18]. In this study we used the cvxpy [19] library to solve
Problem [3

b) A update:
For fixed C, the optimization problem (@) with respect to
A is:

. |Cij| + [Cj,il
min A Z T—I-QA Z log(2A; ;)

1<i<j<p "I 1<i<j<p

A - A

subjectto AZ'J‘EO, AZ"]‘:A]‘J‘ N 1§Z<]Sp

To address the symmetry constraint, a straightforward way is
to optimize over the upper diagonal values and to set A;; =
A, ; for ¢ < j. The minimisation can then be carried out by
directly calculating the exact minimum, which is given in the
next proposition.

Proposition 2. The roots of the derivative with respect to A ,,
of the objective function (6)) are:

A,;m‘or . 1 A
m 2ikm/3 3| = [ _ =
3 ¢ 2 {71V a7

L =

_ 1 A
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A = 4p3 +274¢° .

Furthermore, there exists at least one positive root for the
derivative with respect to A, ,, and the global minimum on
the interval |0, +o00[ is attained at one of these roots.

Theorem 1. ( Convergence of AALasso)

The sequence { A(T))} —12.. generated by the 2
blocks alternating minimization is defined and bounded. More-
over, every cluster point is a stationary point of the MAP ().

Proof. (Sketch) The proof consists of verifying that our objec-
tive function satisfies the assumptions in point (3) of Theorem
4.1 of [20]. O

Algorithm 1: Fitting algorithm.

input : Ny, A, 7, AP

output: C, A

A(O) <« Aprior

for : < 1 to N;,, do
C% « fc(C, A1) where fc denotes the

update in (III-C)).
A(i) — fa(CH A
(LII-C).
return C( Nier) | A (Nieer),

) where fa denotes the update

IV. EXPERIMENTS

Several experiments were conducted using both synthetic
and real datasets to assess the performance of AALasso.
Quantitative results are exclusively provided for synthetic data
due to the unavailability of ground truth graphs for the majority
of real-world datasets. Consequently, synthetic data allow to
evaluate the performance of our method, while real data are
used to present visual results.

A. Task and evaluation metrics

In these experiments, the objective is to learn a Network

Granger causality (NGC) from given multivariate time series
and a prior network. We suppose that these series follow a
VAR(1) model, hence, learning the NGC is equivalent to fit
the VAR parameters, i.e., given X € RP*N and AP in RP¥P
we want to estimate the matrix C.
Since VAR models are usually employed for forecasting tasks,
a standard metric to evaluate estimators is the normalized Root
Mean Square Error (nRMSE) of the one step predictions. Let
X |t] be a multivariate time series and X [t] be the reconstruc-
tion using the fitted VAR model at time ¢, the nRMSE is
defined by:

2

X[ - x|
=, IXHE

Note that, the main objective of this paper is to learn the
underlying NGC, so we are more interested in learning a
relevant graph than allowing a good reconstruction (even
though the two tasks are correlated). To evaluate the quality of

nRMSE(X) :=




the learned graph, we compute the Fl-score between C and
C* (see e.g. [21] for more information). This metric is defined
as follows:

2 - precision - recall

F1-score := —
precision + recall
where
. True Positives
precision = — —
True Positives + False Positives
and

True Positives
recall =

True Positives + False Negatives

Note that the Fl-score is only available for synthetic data as
we need to have access to the true graph (the true VAR model).
Although these two measures are related (a good graph should
lead to a good reconstruction), it should be noted that a good
reconstruction can be achieved by a relatively dense graph.
Given that sparsity is a desired property, the F1 score is
used to understand whether the learned graph can efficiently
reconstruct time series while avoiding irrelevant edges.

B. Methods

The aim of these experiments is to show that AALasso can
exploit prior knowledge to improve its performance compared
to existing methods. We compare our estimator to the classical
estimators: the Lasso and the Adaptive Lasso with weights
equal to the least squares estimates (noted LS + ALasso,
cf [18]]). Moreover, since the first step of our algorithm is
equivalent to solve an Adaptive Lasso problem assuming that
the weights are given by W ; = ﬁ, we compare our method
with this first step (denoted 1-AA]1asso) to demonstrate the
usefulness to perform several steps. Note that we do not show
the performances of the Least Squares estimator since the
results are poor in settings with only few samples. Finally,
note that the Lasso and LS+ALasso algorithms do not take
into account the prior matrix, so the prior noise will not impact
their results.

C. Synthetic data

The synthetic data were generated with respect to the
statistical model . To define the matrix A*, we first generate
p = 40 points in [0,1]? uniformly at random. Then, we
construct a matrix D € RP*P by applying a Gaussian kernel

K, == (z,y) — exp (Hx;ié/\l%), (z,y) € R?, to the Euclidean
pairwise distances, taking their median values for o. A* is
obtained by randomly setting to 0 a ratio 7,,, = 0.5 of values
of D (mispecified edges) and cutting to 0 values smaller than
7 = 0.7 to promote sparsity. Finally, VAR parameters are
drawn from Laplace(0, A} ;) and AP*" = D + ¢, where €
is a symmetric matrix where subdiagonal values are sampled
from iid Gaussian distribution with variance 0% (varying in
{0.02,0.1,0.25,0.35} to test several level of noises). At the
end, for each experiment, we generate time series following the
VAR model with lengths N = {2 x 40,2 x 100,...,2 x 250}
different time series X[t] ~ N(C* X[t — 1],0%), 0% = 0.1,
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Fig. 1. Top panels: INMSE and Fl-score in function of the Signal to Noise
Ratio in dB using N = 40 samples for training. Bottom panels: rNMSE and
Fl-score in function of the number of samples used for training using a SNR
equals to 15. We plotted the 90% confidence intervals.

which we split into training and test sets of equal sizes. We
repeated this procedure 20 times for each value of V.

For all of the 20 experiments, we performed Ny = 10
iterations in the alternating minimization algorithm using
half of the training set and the parameters A\ and y were
selected via cross validation minimizing the nRMSE over the
second half. We compared our method both to the Lasso
estimator and the Adaptive Lasso estimator using weights
given by the least squares estimator (see [18] for details) and
both metrics were computed on the test set.

The results in Figure [I] exhibit better reconstruction and
greater Fl-score when utilizing AALasso rather than vanilla
methods when the number of samples is lower than 140.
From 40 to 140 samples, AALasso returns Fl-scores from
0.6 to 0.8 while LS+ALasso Fl-score ranges from 0.5 and
0.73 (an average gain of 0.1). Thus, our algorithm effectively
leverages the additional information in settings with few
samples, and our approach enables fine-tuning of the graph
while remaining a good forecasting power. When the number
of samples increases, the LS+ALasso estimator provides better
reconstruction than AALasso. However, recall that we are
interested in a graph learning task so the Fl-score is more
informative than the reconstruction error, and shows satisfying
results even for relatively large number of samples (until a
certain threshold, here 250 samples).

Finally, the difference of results between the first iteration and
the complete optimization process of AALasso points out the
interest of the alternating minimization.

D. Real data

We tested our method on the Moléne dataset, which consists
of temperatures recorded by sensors at 32 locations in Brittany.
Also we considered the first derivative of the signals rather
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Fig. 2. Results on the Molene dataset for (a) AALasso and (b) Lasso. Darker
colors indicate larger weight.

than original signals in order to verify wide-sense stationary
assumptions of VAR models. We trained the models with 80
points, still selecting A (for Lasso and AALasso) and v by
cross-validation. Figure (Z) compares the resulting graphs of
Granger causalities using our method AALasso and a Lasso.
We observe that the graph returned by AALasso is sparse while
remaining almost connected and allows a good visualization
of the process. Moreover, contrarily to the Lasso one, it is
consistent with the Euclidean structure.

Remark 2. Note that some points are not connected (no
incoming edges), meaning that their are independent from the
others.

V. CONCLUSION

In this paper, we have presented a method that demon-
strates its efficiency in learning Granger causalities under
high-dimensional settings with limited samples. By effectively
incorporating prior knowledge in the form of a noisy adjacency
matrix, our method allows us to obtain better accuracy and
robustness than state of the art algorithms. Moreover, the
framework we present here can be extended to learn graphs
with specific structure (spectral and adjacency constraints on
the graph) as the ones given in [[17] since the model deals with
a symmetric matrix with positive values.
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