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Abstract—In this article, we introduce a method inspired by
Graph Signal Processing (GSP) for the analysis of human motion
based on the 3D positions of skeletal joints. Our approach uses
a graph dictionary learning technique, in which each velocity
sample is decomposed into a linear combination of a limited set
of atoms acquired directly from the data. The efficacy of this
methodology is evaluated using a dataset focused on upper limb
elevations. We present features and visualizations, and validate
the robustness of the approach through the construction of inter-
and intra-subject distances. The features are also used as inputs
for Human Activity Recognition with competitive results. The
interpretability of the features and visualizations obtained from
this method make it suitable for applications such as inter-
individual comparisons or longitudinal follow-up of patients.

Index Terms—Dictionary learning, Graph Signal Processing
(GSP), Human Motion Analysis

I. INTRODUCTION

The exploration of human motion analysis is an intriguing
area of research with a wide array of applications, spanning
from video surveillance and human-machine interaction to
diagnostic aid and medical rehabilitation. In recent times, the
use of skeleton-based motion data has grown significantly, in
particular the 3D positions of various skeletal joints tracked
over time. This approach has shown significant potential for
extracting useful information about human movements.

To leverage the multivariate nature of skeleton data, re-
searchers have proposed to encode the skeleton information as
a graph structure. In recent years, deep learning methods, in
particular Graph Convolutional Networks (GCN), have gained
attention due to their remarkable results in Human Action
Recognition [1]–[4]. However, these models are often highly
complex, time-consuming to train and require to work with
large datasets [5]. Deep-learning approaches also tend to be
task-specific, and features acquired in a supervised manner
can be challenging to interpret. This becomes problematic
when the focus extends beyond merely identifying actions
to studying how they are executed and understanding the
common and individual characteristics of human movement.
In such investigations, it is crucial for features to be both
discriminative and interpretable, facilitating the identification
of similarities and differences in actions performed by distinct
subjects.

Given these considerations, the methodology introduced
in this article diverges from relying on deep learning tech-

niques and instead adopts the Graph Signal Processing (GSP)
framework [6]. Similar to GCNs, GSP methods operate under
the assumption that skeletal structure is encoded as a graph,
reflecting the proximity between body joints. However, distinct
from utilizing ”black boxes” like convolutional networks, tools
derived from the GSP framework offer the intriguing property
of being directly interpretable. This stems from the fact that
most notions defined in this framework are extensions of stan-
dard signal processing tools to irregular domains, including
filtering, sampling, Fourier transform, and sparsity. In the GSP
framework, 3D skeleton data are simply regarded as ”graph
signals” lying on the graph. In this article, we introduce the
first application (up to our knowledge) of GSP dictionary
learning for human motion data. By leveraging the advantages
of tools from the GSP framework and dictionary learning
methods, we develop an analysis approach that combines
simplicity, interpretability and versatility.

II. BACKGROUND

A. The GSP framework

A graph is defined as a triplet G = {V, E ,W}, V =
{v1, v2, ..., vN} being the set of N nodes and W ∈ RN×N

+

being the affinity matrix that contains the weights of the
edges specified in the set E = {(i, j), i, j ∈ V}. From the
affinity matrix, it is possible to compute the Laplacian of the
graph L = D −W with D the diagonal degree matrix, i.e.
Dii =

∑
j ̸=iWij . A graph is said to be connected if ∀u, v ∈ V

there exist a finite sequence of edges connecting u and v. In
the following, we will only deal with connected and undirected
graphs so that the Laplacian is a symmetric matrix.

A graph signal is a function f : V → R that assigns a scalar
value or a vector to each node of a graph. This function can
be represented in a vector form f = [f1, ..., fN ] ∈ RN .

The eigendecomposition of the Laplacian provides us with
a spectral basis corresponding to the eigenvectors denoted
by U = [u1, ...,uN ], and eigenvalues interpreted as spatial
frequencies denoted by σ(G) = {λ1, ..., λN}. For a given
graph signal y, it is thus possible to define its Graph Fourier
Transform (GFT) as ỹ = UTy where ỹ contains the energies
associated with each frequency.



B. GSP dictionary learning

Provided a collection of n graph signals y1, . . . ,yn, the aim
of GSP dictionary learning techniques is to decompose these
graph signals on a set of L vectors (d1, ...,dL) called atoms.
The decomposition of a given graph signal y ∈ RN can be
written as follows:

y ≈
L∑

l=1

xldl (1)

where x = (x1, ..., xL) is the activation vector giving the
contribution of each atom in the approximation of the signal
y. The sparsity of this activation vector can be imposed using
greedy algorithms such as the Matching Pursuit, or using
convex relaxation methods.

The atoms can either be fixed or learned from the data.
For instance, Kao et al. [7], [8] use the graph Fourier basis,
wherein atoms are predetermined, to investigate human motion
and address the gesture recognition task. The use of an analyt-
ical dictionary has the advantage of being numerically fast, but
it can also be poorly adapted to the data studied. Alternatively,
atoms can be directly inferred from the data using training
algorithms such as the method of optimal directions or the
K-SVD algorithm. This approach is often numerically more
expensive, but it allows to obtain dictionaries better adapted to
the data. If we need a dictionary that combines the advantages
of analytical and learned dictionaries, it is also possible to use
hybrid approaches that search for atoms constructed as linear
combinations of analytical atoms [9].

III. METHOD

Our method is composed of three steps:
1) Graph and graph signals construction from the raw data
2) Creation of the analytical graph Mexican Hat wavelets

basis [10]
3) Hybrid GSP dictionary learning using the double spar-

sity approach [9]
The method takes as input a dataset of 3D velocity time series
and output the learned atoms and the time activations.

A. Data

We use the Arm-CODA [11] dataset which is composed
of 143 motion sequences captured with 34 Cartesian Opto-
electronic Dynamic Anthropometer (CODA) motion system
3D position markers, from a cohort of 16 healthy subjects.
The database contains 3 different elevation movements of the
right arm, the left arm, and both arms in the scapular plane,
performed 2 or 3 times by each subject.

B. Graph and graph signals construction

a) Graph construction: For this study, the constructed
graph is an undirected and weighted spatial graph represen-
tative of the human body. Each node is associated with a
joint (or a sensor) and the weighted edges are determined
from the database. The weight wi,j is computed by taking

Fig. 1. Weighted and undirected k-nn Graph constructed from the Arm-
CODA dataset with k = 5. Each node is represented with a white circle and
the edges are the lines connecting these nodes.

the maximum distance di,jmax between the joints i and j on the
whole database:

wi,j ∝ e−di,j
max (2)

Afterward, the generated graph undergoes simplification to
form a k-nearest neighbors (k-nn) graph. Specifically, for each
joint, only the edges connecting it to its k closest neighbors
are retained. The value of k is set to the smallest required for
maintaining a connected path between every pair of nodes,
ensuring graph connectivity. Subsequently, we enforce sym-
metry with respect to the longitudinal axis by computing the
mean of weights associated with symmetrical edges. Figure 1
provides a visual representation of the constructed graph using
the Arm-CODA dataset with k = 5.

b) Graph signals construction: From the 3D positions
of each skeletal joint, we calculate the first time derivative to
obtain the velocity signals. Each multivariate time sample can
be considered as 3 distinct graph signals (one per dimension).
All these graph signals, represented as vectors, are then stored
on the columns of three matrices Y(d) ∈ RN×T , d ∈ {x, y, z}.

C. Graph Mexican hat wavelets basis

We first construct a set of analytical atoms derived from
Mexican hat wavelets. The coefficients of the wavelet ψβ,i ∈
RN , at scale β and centered on node i, are obtained with the
following formula:

ψβ,i(m) =

N−1∑
l=0

g(λl)δ̂i(l)ul(m) (3)

with ul(m) the mth coefficient of the eigenvector associated
to the eigenvalue λl of the Laplacian, and δ̂i the GFT of the
Dirac graph signal located on node i.

In the following, we will use two different kernels:
• A band-pass filter g1(βx) = βx × e−βx with scale

parameter β.
• A low-pass filter g2(x) = γe−( 20

0.4λmax
x)4 , with γ = 1.2×

e−1, that captures low-frequency phenomena.
In the final atom set, we consider N = 34 impulse signals,

which are Diracs located on each of the N nodes of the graph,
and 5 different kernels (one low-pass and four band-pass with
different scales), leading to a total of K = 5 × 34 = 170
wavelets. These wavelets, which have different scales and are



centered on different graph nodes, enable us to account for
phenomena with different ranges and locations.

D. GSP dictionary learning
In this paper, we use a double sparsity approach [9], [12]

that will allow us to learn a set of super-atoms using Mexicat
hat analytic atom combinations. The final dictionary is defined
as a product D = ΦA, where Φ ∈ RN×K is the fixed
dictionary containing the Mexican hat atoms in its columns,
and A ∈ RK×L is a learned sparse matrix.

Our Double Sparsity Mexican Hat (DSMH) dictionary
learning algorithm learns a set of super-atoms (d1, . . . ,dL),
defined as linear combinations of Mexican hat atoms in
Φ = (ϕ1, . . . ,ϕK) :

dl ≈
K∑

k=1

akϕk (4)

where a = (a1, ..., aK) is a sparse vector containing the
weights of the linear combination.

These weights are learned from the graph signals Y by
solving the optimization problem:

argmin
A,X

||Y −ΦAX||2F

s.t. ||xi||0 ≤ s1 ∀i,
||aj ||0 ≤ s2 ∀j, ||Φaj ||2 = 1 ∀j.

(5)

where s2 is the maximum number of atoms combined to
create a super-atom and s1 is the maximum number of super-
atom used to approximate each graph signal. X ∈ RL×T is
the activation matrix containing the contribution of the super-
atoms to the signal reconstruction. This problem is addressed
using a greedy procedure described in [12], which is based on
the Matching Pursuit algorithm.

IV. RESULTS

Several outcomes from our DSMH approach can be ex-
tracted for the study of human locomotion:

• The learned super-atoms D are displayed on Figure 2.
The parameters chosen are the following : s1 = 3, s2 = 5
and L = 10.

• The activations X provide an indication of the use of each
super-atom over time. For sake of conciseness, we only
display, for each movement, timelines that represents the
most activated super-atom and the second most activated
super-atom, on Figure 3.

• Two motion sequences can be compared using the his-
tograms of the activations of each super-atom. For each
motion sequence, we compute the contribution of each
super-atom (in percentage) to construct an histogram
defined as a probability vector. Next, we use the Jensen-
Shannon divergence to calculate the distance between two
histograms, in order to obtain a distance between two
motion sequences.

• Similarly to [8] that use a fixed graph Fourier dictionary,
the activations can be used as features for Human Action
Recognition (HAR) through a temporal pyramid proce-
dure (TPM) [13].

A. Interpretation of the super-atoms

In Figure 2, the learned super-atoms are ordered by decreas-
ing percentage of activation, so that the first super-atoms are
those that contribute most to signal reconstruction over the
whole database.

Along the z-axis, the super-atom 0 is a symmetrical atom
with the two arms colored in blue, which correspond to a
negative velocity signal. This bilateral super-atom can typi-
cally be used to reconstruct an elevation of both arms, with a
negative activation during the ascending phase and a positive
activation during the descending phase. Concerning the super-
atoms 1 and 2 (for x-, y- and z-axes), we can describe them as
unilateral super-atoms as there is a higher velocity signal on
one of the two arm. Thus, the super-atom 1 could for example
be used to reconstruct a right arm movement, while the super-
atom 2 could be used to approximate a left arm elevation. In
the end, the most used super-atoms are consistent with the
analyzed movements which include right arm, left arm, and
both arm elevations.

Some similarities between super-atoms can also be ob-
served. For example, the super-atoms 3 and 6 for the z-axis are
bilateral graph signals just like the super-atom 0. Nevertheless,
these 3 graph signals are not identical, and show differences
in the intensity of the velocity on the nodes located on the
forearms. These subtle differences are worth noting, because
with such a small dictionary, the super-atoms obtained are con-
structed to approximate the signal as closely as possible, and
must therefore characterize significant phenomena. Among the
other super-atoms, some have very localized velocity signals
on the graph, i.e. only a few nodes carry a significant velocity.
We can for example mention super-atoms 6 and 9 for the x-
axis, super-atoms 8 and 9 for the y-axis as well as super-atoms
5, 8 and 9 for the z-axis. Some of them, such as super-atom
9 for the y-axis, have a localized velocity signal on a single
node located on the left clavicle. These super-atoms are linked
to outliers in the dataset because it corresponds to sensors that
are sometimes hidden from the cameras.

B. Interpretation of the activations

Figure 3 shows the activations of the two super-atoms that
contribute the most to the signal reconstruction over time for 4
subjects and 3 movements (elevation movement of both arms,
right arm and left arm).

The 1st activation timelines (top) are fairly similar from one
subject to the next, and easily distinguishable for two different
movements. By carefully studying these timelines we can also
notice some important variations between subjects. Regarding
the bilateral elevation, subjects A and D use the super-atom
3 in red along the z-axis in the middle of the movement, i.e.
when the arms are about to reach the maximal elevation and
when it starts to go down. Subject B, and more particularly
subject C, use super-atom 6 along the z-axis at the beginning
and at the end of their movement. This super-atom is a bilateral
graph signal similar to the super-atom 0, but the intensity of
the velocity is different for the two sensors located at the end



Fig. 2. DSMH dictionaries of L = 10 super-atomes obtained to reconstruct the matrices Y (x), Y (y), Y (z) in the case of elevation movements of the right
arm, left arm and both arms in the scapular plane. Each line corresponds to a space dimension and the super-atoms are ordered by decreasing total contribution
to the reconstruction.

Fig. 3. Timelines indicating the super-atoms that contribute the most to the signal reconstruction over time for subject A, B, C and D (selected from the 16
subjects of the CODA database). These 4 subjects have the following characteristics [Sexe, Age, Size (cm), Weight (kg)]: A[F;47;170;65], B[M;57;173;75],
C[F;52;156;64], D[M;28;179;73]. Each color in the legend corresponds to a given super-atom. (Top) Timelines for the elevation movement of both arms,
right arm and left arm, indicating the most used super-atom over time. (Bottom) Timelines for the elevation movement of both arms, right arm and left arm,
indicating the 2nd most used super-atoms over time.

of the forearm. Thus, the use of the super-atom 6 could be
associated with a rotation of the forearm.

For the 2nd activation timelines (bottom), we can enter into
a much finer analysis of movement. There are many more
differences between subjects, but the timelines associated with
different movements can still be identified. This suggests that
this second level of activation is still capable of capturing
movement-specific phenomena, and therefore merits further
analysis.

In the end, the timelines have the advantage of being com-
pact while being very informative. The temporal information
provided by this representation is crucial to analyze the human
motion. It can be used to identify patterns that are present in
the motion sequences of different subjects.

C. Inter/Intra-subject distances
In order to better quantify the differences between subjects

and to validate the robustness of our motion representations
we have plotted on Figure 4 the inter/intra-subject distances
(Jensen- Shannon divergence) between the activation his-
tograms.

For bilateral elevations, the intra-subject distances are all at
least below the first quartile of the inter-subject distribution.
This means that the characteristics obtained for a subject
repeating the same movement twice are closer than the char-
acteristics of two movements performed by different subjects.
We also note that subject D has very good repeatability
whatever the movement, and that subject B seems to be the
one who differs most from the other subjects. These results
can be supplemented by the analysis of the timelines of Figure
3. For instance, Subject B uses super-atoms 1 and 2 in the first
activation and super-atom 4 in the second activation along the
x-axis for the bilateral elevation.

D. Application to Human Activity Recognition (HAR)
In this section, we evaluate the performance of the proposed

features to discriminate between different motions on four
different Action 3D datasets. Table I compares our method to
one method based on GSP [8] and four methods using Graph
Neural Networks (GNN). It should be noted that, unlike the
two GSP methods, the latter are specifically dedicated to this
task and rely on several million parameters.



Fig. 4. For each movement, we plotted boxes indicating the distribution
of distances between the histograms of the different movement sequences in
order to measure inter/intra-subject variability. For a given movement, we have
two boxes per subject: a blue one for the distances between repetitions of the
same movement for that subject, and a grey one for the distances between
movements performed by that subject and those performed by the other 15
subjects.

Recognition Method UTK [14] MSR [15] F3D [16] ntu cs mini [5] [17]
Kao et al. [8] 95.00 71.45 82.63 -

ST-GCN [1], [5], [18] - 27.64 (CS) - 71.53 (CS)
GR-GCN [3] 98.5∗ - 98.4∗ -

Deep STGCK [2] - - 99.1∗ -
shift-GCN [4], [5] - - - 60.00 (CS)

Our method 96.00 71.94 82.38 66.25

TABLE I
ACCURACY OF THE DIFFERENT RECOGNITION METHODS ON THE HAR
TASK. ALL THE ACCURACIES CORRESPOND TO A LOOCV VALIDATION

SCHEME, EXCEPT FOR THE NTU CS MINI DATASET AND FOR THE
ST-GCN METHOD ON THE MSR DATASET FOR WHICH A CROSS-SUBJECT

(CS) VALIDATION WAS USED. ∗RESULTS OBTAINED WITH DATA
AUGMENTATION PROCEDURES.

For most datasets, the scores obtained by our method are
consistent with state-of-the-art results. Although the main
objective of the DSMH method is not to tackle the HAR task,
it nevertheless captures motion features that are sufficiently
generic to effectively discriminate between different actions.
In addition, our approach performs slightly better than the
alternative GSP method on UTK and MSR.

Deep learning techniques outperform GSP methods, but this
comes at the cost of data augmentation procedures and/or a
complex architecture with millions of parameters [5] compared
to around a hundred for the DSMH method. What’s more,
without data augmentation, these methods can perform sig-
nificantly less well. For example, the ST-GCN method has
an accuracy of 27.64% on the MSR dataset with between-
subjects validation, while the DSMH method has an accuracy
of 71.94% with a LOOCV validation scheme.

V. CONCLUSION

The methodology presented in this article makes it pos-
sible to extract meaningful and useful visual representations
and features that provide insights for the analysis of human
movement. This approach could be used, for example, for
longitudinal follow-up and inter-individual comparison.
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“Graph signal processing: Overview, challenges, and applications,” Pro-
ceedings of the IEEE, vol. 106, no. 5, pp. 808–828, 2018.

[7] J.-Y. Kao, A. Ortega, and S. S. Narayanan, “Graph-based approach
for motion capture data representation and analysis,” in 2014 IEEE
International Conference on Image Processing (ICIP). IEEE, 2014,
pp. 2061–2065.

[8] J.-Y. Kao, A. Ortega, D. Tian, H. Mansour, and A. Vetro, “Graph
based skeleton modeling for human activity analysis,” in 2019 IEEE
International Conference on Image Processing (ICIP). IEEE, 2019,
pp. 2025–2029.

[9] R. Rubinstein, M. Zibulevsky, and M. Elad, “Double sparsity: Learning
sparse dictionaries for sparse signal approximation,” IEEE Transactions
on signal processing, vol. 58, no. 3, pp. 1553–1564, 2009.

[10] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on
graphs via spectral graph theory,” Applied and Computational Harmonic
Analysis, vol. 30, no. 2, pp. 129–150, 2011.

[11] S. W. Combettes, P. Boniol, A. Mazarguil, D. Wang, D. Vaquero-Ramos,
M. Chauveau, L. Oudre, N. Vayatis, P.-P. Vidal, A. Roren, and M.-
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