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Abstract

We study the network reconstruction problem for an epidemic reaction-
diffusion system. These systems are an extension of deterministic, compart-
mental models to a graph setting, where the reactions within the nodes are
coupled by a diffusion dynamics. We study the influence of the diffusion rate,
and the network topology, on the reconstruction and prediction problems,
both from a theoretical and experimental standpoint. Results first show that
for almost every network, the reconstruction problem is well-posed. Then, we
show that the faster the diffusion dynamics, the harder the reconstruction, but
that increasing the sampling rate may help in this respect. Second, we demon-
strate that it is possible to classify symmetrical networks generating the same
trajectories, and that the prediction problem can still be solved satisfyingly,
even when the network topology makes exact reconstruction difficult.

Keywords. Epidemic models, network reconstruction, reaction-diffusion, graph
automorphisms
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1 Introduction

Network reconstruction problems, in which one aims at reconstructing a network
structure from the observation of a signal evolving on it, is an important topic of
current research, spanning over numerous domains (Timme and Casadiego 2014;
Shandilya and Timme 2011; Dong et al. 2015; Le Bars et al. 2019; Sardellitti, Bar-
barossa, and Lorenzo 2019; Asllani et al. 2020; Emary and Fort 2021). Indeed, the
widespread use of networks as a modelling tool in �elds as diverse as telecommu-
nications (Pastor-Satorras and Vespignani 2004; M. E. J. Newman, Watts, and
Strogatz 2002), genetics (Gardner et al. 2003; Karlebach and Shamir 2008), ecology
(Hanski and Gilpin 1997; Tamburello, O. Ma, and M. Côté 2019), or transporta-
tion of goods or humans (Youn, Gastner, and Jeong 2008; Per�do et al. 2017), to
name but a few, makes understanding the connections between their structure, or
internal properties, and the phenomena which happen over them, a crucial issue.

A popular framework to study propagation phenomena on networks are determinis-
tic epidemic models (Nowzari, Victor M. Preciado, and Pappas 2016). These models
have gained considerable attention since the early 20th century, following notably
the classic works of Kermack and McKendrick (1927). In those, individuals are
categorized in compartments which describe their status with respect to an infec-
tious disease, and the models describe the way they transition from compartments
to compartments as the disease spreads through contacts, and they react (heal)
to it (Diekmann, H. Heesterbeek, and Britton 2012). Quickly, the early scalar
models have been enhanced, by embedding them into networks (Pastor-Satorras
and Vespignani 2001; Pastor-Satorra et al. 2015; Nowzari, Victor M. Preciado, and
Pappas 2016), in order to re�ne the analysis of the in�uence of contacts between
individuals, on the spread of the disease.

Recently, Prasse and Van Mieghem (2020a) have addressed the reconstruction prob-
lem for a wide class of epidemic models (Nowzari, Victor M. Preciado, and Pappas
2016). In their work, they ask two questions: �rst, can the network structure
be retrieved from the observation of the dynamics? Secondly, even in the case
of a negative answer, is it possible to approximate the structure well enough to
predict the future evolution of the disease? Even if the problem they study has
a linear structure, they show the answers to these questions are not straightfor-
ward. We propose to address the same questions on another very important class
of network-epidemic models, the epidemic reaction-di�usion models, also known as
metapopulation models with explicit movement (Arino 2009). Just like the model
studied in Prasse and Van Mieghem (2020a), the nodes of the graph represent sub-
populations: for instance, the cities in the transportation network of a country.
However, the interactions between populations is no longer described by a static
contact structure, but by a di�usion dynamics. Accordingly, the internal dynam-
ics of each sub-population follows a standard deterministic epidemic model (SIS,
SEIR, ...) (Diekmann, H. Heesterbeek, and Britton 2012) while �ows of individuals
go from node to node through a di�usion dynamics. Following their apparition
in population dynamics in the 1970's, these models have since gained considerable
attention in the �eld of mathematical epidemiology (Brauer and Driessche 2001;
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Van den Driessche and Watmough 2002; W. Wang and Zhao 2005; Allen et al.
2007; Tien et al. 2015; Arino 2017; Soriano-Paños et al. 2022). However, we are
not aware the inverse problem has been studied for these models, up to now.

We therefore propose to conduct a case-study in network reconstruction for epi-
demic reaction-di�usion models. On the one hand, it contributes in exploring a
new (up to our best knowledge) line of work on these models, and also furthers
the general works on network reconstruction for network epidemic models. On
the other hand, it contributes to network reconstruction studies by showing their
usefulness on yet another setting. First, we conduct a theoretical analysis of the
system, studying the role played by the speed of di�usion, and the symmetries of
the network, in making reconstruction more di�cult. Second, we illustrate numer-
ically our �ndings related to the speed of di�usion, and study the reconstruction,
and prediction, problems for di�erent network topologies, before considering the
impact of noise on the reconstruction.

We �rst present background material and related works in Section 2. Next, we
de�ne the model we study, and introduce our notations, in Section 3. Then, we
study reconstruction from a theoretical standpoint in Section 4. Finally, we conduct
numerical simulations in Section 5. The proofs are deferred to the appendices. The
code for the simulations, implemented in Python, is available on the git repository:
https://reine.cmla.ens-cachan.fr/masse/network_reconstruction_reaction_
diffusion .

2 Background and related work

We �rst present the classical epidemiological models (Section 2.1), before giving a
short overview on network reconstruction techniques (Section 2.2), and symmetries
(2.3). Finally, we present our contributions (Section 2.4).

2.1 Deterministic, Compartmental Epidemiological Models

Deterministic, compartmental epidemiological models represent the propagation of
a disease within a population by �rst segmenting the population in compartments,
describing the status with respect to the disease (Diekmann, H. Heesterbeek, and
Britton 2012). Classical compartments include the �susceptible� (S), which gathers
people which may contract the disease when confronted to �infected� (I) people, who
later will have �recovered� (R). Transitions from compartments to compartments
are governed by di�erential equations. One simple and generic model, which we use
for simplicity throughout our study, is the SIR model. Three scalar functions s, i
and r track the numbers of people in each compartment, and they evolve according
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to, for all t � 0, 8
>>>>><

>>>>>:

ds
dt

= � �si

di
dt

= �si � �i

dr
dt

= �i:

(1)

The parameter � is often called the infection rate, and � is the curing rate. The
quantity � � 1 may be interpreted as the average time an individual remains infected,
before healing (Diekmann, J. A. P. Heesterbeek, and Roberts 2009). The fact�
is positive means people heal in �nite time. It is well-known that the system
of Equation (1) has a global solution for every initial condition (s0; i 0; r 0) with
only nonnegative coordinates, and that solutions tend to equilibria of the form
(s1 ; 0; r 1 ) (Diekmann, H. Heesterbeek, and Britton 2012).

Works have extended these models to graphs, in order to increase their representa-
tive power (Nowzari, Victor M. Preciado, and Pappas 2016). Nodes of the graphs
represent either individuals, or sub-populations (cities, or countries, for instance).
The coupling between the nodes may be static (Nowzari, Victor M. Preciado, and
Pappas 2016): individuals remain in their node, and can be infected by individuals
in nodes with which their node has contacts. In our work, we consider a di�usive
coupling (Brauer and Driessche 2001; Van den Driessche and Watmough 2002; W.
Wang and Zhao 2005; Allen et al. 2007; Tien et al. 2015; Arino 2017), whereby
individuals can only be infected by other individuals in the same node, but move
through the graph according to a di�usion dynamics.

2.2 Background on Issues in Network Reconstruction

The network reconstruction problem from observations, where one aims at explic-
iting the topology of a network of N nodes, by observing the values taken by some
dynamical system which evolves on it, has been extensively studied in the literature
(see for instance the review Timme and Casadiego (2014)). Angulo et al. (2017)
characterize the theoretically necessary conditions on the structure of the dynamic
system of the network, and on the measured data, for the reconstruction to be
possible. Asllani et al. (2020) focus on the role of the interplay between node level
versus network level dynamics. The network is described by some matrix, typically,
the adjacency matrix, possibly weighted. Observations are often gathered in two
matrices. The �rst matrix gathers estimates of the time derivatives of the state
of the dynamical system in each node, at the di�erent measurement times. The
second matrix is the so-called observation matrix, and gathers the values in each
node, at the same times. Then, the three matrices satisfy a linear relation, and the
reconstruction problem may be solved by regression. We �rst describe the di�erent
observations possible, then address the issue of solving the regression.

Observations may �rst consist in measurements of the answer the system gives to
some user-driven perturbation of its dynamics (Gardner et al. 2003; Yeung, Tegnér,
and Collins 2002; Yu and Parlitz 2010). In the case of non linear dynamics, these

5



perturbations may occur near a �xed point, the interest being that the �rst-order
expansion of this system then depends linearly on the network (Gardner et al. 2003).
Alternatively, observations may be obtained through mere observation of the system
(Shandilya and Timme 2011; Makarov, Panetsos, and Feo 2005; Young, Cantwell,
and M E J Newman 2021). The nature of the exact regression problem to solve
moreover depends on whether a model for the dynamics studied is known (Shandilya
and Timme 2011; Gardner et al. 2003; W.-X. Wang et al. 2011; Prasse and Van
Mieghem 2020a), or not (Quinn et al. 2011; Barzel and Barabàsi 2013; Mangan
et al. 2016; Casadiego et al. 2017). For instance, in Bussel, Kriener, and Timme
(2011), the authors use detailed knowledge of the evolution of a synthetic model of
a biological synaptic network between spiking times, to obtain the relation satis�ed
by the network matrix. On the other hand, (Casadiego et al. 2017) only assume
some very general relation between the �rst order derivatives of the dynamical
system, and the values it takes, in order to obtain similar relations. Li et al. (2017)
propose a principled data-based method to linearize the switching probabilities of
binary state dynamics, for a broad range of monotonic switching functions.

Once obtained the observations characterising the network matrix, one must then
solve the regression problem. It may be over, or under determined, (Stoer and
Burlisch 1993). Even when it is well determined, it may be ill-conditioned, thus
preventing e�cient solving by mere matrix inversion. To address these issues, a
standard choice is to minimise the regression error with respect to some norm. One
choice is then betweenL 1 or L 2 (least-squares) optimisation. The former induces
sparsity, which may be desirable. For instance, Mangan et al. (2016) assume the
dynamics decompose in some well-chosen basis, and that most of the coe�cients in
the expansion vanish. They then identify a subspace to which the vector of coef-
�cients belongs, and �nally use standard algorithms to �nd the sparsest vector in
this subspace. Z. Shen et al. (2014) use compressed sensing to recover the network
structure, and the infection and curing rates, in a stochastic setting. In Yeung, Teg-
nér, and Collins (2002), the authors use an SVD decomposition of some observation
matrix to parametrize the set of networks consistent with the data, and then use
sparse regression to �nd the sparsest such network. In W.-X. Wang et al. (2011),
the authors decompose the dynamics over some in�nite basis, then use compressed
sensing to evaluate the coe�cients, only few of them are then nonzero. In Ma, Han,
et al. (2015), the authors reconstruct undirected, heterogeneous networks by no-
tably identifying nodes where link-reconstruction suggestions are contradictory, and
overriding them with more consistent information providing nodes. Least-square
optimization is on the other hand less costly, and better suited for over-determined
systems. In Prasse and Van Mieghem (2020a), the authors use a least-square opti-
misation, but add a L 1 penalty in order to enforce some degree of sparsity.

Let us also brie�y mention the following works. Tyrcha and Hertz (2014), in an-
other vein, di�erentiate the dynamics of the model, in order to train it to repro-
duce the observations, as is usual for Recurrent Neural Networks. Ma, Liu, and
Van Mieghem (2019) study the correlation between the epidemic prevalence in de-
terministic, static-contact network epidemic dynamics and various metrics of the
network, in order to determine those which can be recovered from this precise in-
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formation. Surano et al. (2019) use a statistical procedure to recover the backbone
of a temporal network. Finally, Peixoto (2019) proposed a Bayesian framework for
network reconstruction in the presence of stochastic dynamics, where the posterior
distribution of the observed data is optimised through a Metropolis-Hastings algo-
rithm, and Braunstein, Ingrosso, and Muntoni (2019) used belief propagation also
in a Bayesian setting.

2.3 Background on Network Topology and Symmetries

The topology of the network plays an important role in the behaviour of the sys-
tem evolving on it. For instance, Ganesh, Massoulié, and Towsley (2005) and
Durrett (2010) relate the behaviour of a stochastic epidemic dynamics to the (pos-
sibly asymptotic) properties of random graphs. Vajdi and Scoglio (2018) focus on
recovering missing links in the presence of some degree of information about the
underlying structure.

One peculiar kind of topological feature is the presence of symmetries in the graph.
Also known as automorphisms of a graph, they are known to be a useful tool to
analyse the behaviour of coupled systems of di�erential equations, whose coupling is
described by this graph (Golubitsky and Stewart 2006). They contribute to explain
qualitative behaviours, such as synchronization, of physical systems (Pecora et al.
2014; Salova and D'Souza 2020). In Broom and Rychtá° (2008), the authors relate
the group of automorphisms of the graph to the patterns formed by the Markov
chain evolving on the graph they study. Computing the automorphisms group
of a graph may also help �nd a lumping of a di�erential, or stochastic, system
evolving on the graph. A lumping is a lower-dimensional system which contains all
information about the bigger it was computed from (Filliger and Hongler 2008).
This was notably used for epidemiological models Simon, Taylor, and Kiss (2011),
Ward and López-García (2019), and Prasse, Devriendt, and Van Mieghem (2021).
Symmetries have been shown to occur in many real world networks (MacArthur,
Sánchez-García, and Anderson 2008), which further highlights their relevance for
the study of models unfolding on networks. Finally, Rosell-Tarragó and Díaz-
Guilera (2021) study a weakened notion of �quasi-symmetries� on networks.

2.4 Contributions of the article

In our work, we study the reconstruction, and prediction, problems, for an epidemic
reaction-di�usion system. We assume known an epidemic model, and we consider
that observations are a given, standalone time-series. Theoretically, we show that

ˆ for almost every network, the reconstruction problem is well-posed (Proposi-
tion 7);

ˆ the quicker the di�usion dynamics, the lower the numerical rank of the ob-
servation matrix (Corollary 9);

ˆ the presence of symmetries in the trajectories is equivalent to the existence
of symmetrical networks generating them (Proposition 10).
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Notation De�nition Meaning
N integer size of the graph
u � v (u n vn )1 � n � N 2 RN coordinate-wise product
1N (1 ; : : : ; 1) 2 RN unit vector
RV V 2 RN line directed by the vector V
E1 � E 2 E1 , E2 vector spaces direct sum
S N � symmetric group of order N
N � nodes set of the graph
E � edges set of the graph
n integer, 1 � n � N node of the graph
� n � n > 0 infection rate of node n
� n � n > 0 curing rate of node n
� ( � 1 ; : : : � N ) 2 RN vector
� ( � 1 ; : : : � N ) 2 RN vector
s, i , r s; i; r 2 R+ , or such-valued

time trajectories (e.g. t 7!
s( t ) )

compartments or trajecto-
ries, scalar systems

S, I , R S; I; R 2 RN
+ , or such-valued

time trajectories (e.g. t 7!
S( t ) )

compartments or trajecto-
ries, graph systems

X X = ( S; I; R ) 2 R3N
+ , with

S; I; R 2 RN
+ , or trajectory

state of system, or trajectory

� t (C) � t (C) = ( S( t ) ; I ( t ) ; R ( t )) 2
R3N

+

Value at t of the �ow asso-
ciated to the con�guration C
(De�nition 4).

C
�

R+ ; R3N
�

� Space of continuous func-
tions from R+ to R3N

Table 1: Notations

Technique-wise, our works leverages known tools in network reconstruction, ad-
dressing the same questions as Prasse and Van Mieghem (2020a): we try to re-
construct the network, and to predict the future evolution of the dynamics. Unlike
them, we study a reaction-di�usion dynamics (Arino 2009) instead of a system with
static coupling. Contrary to works using symmetries as an help to reduce the size
of the system they study (Ward and López-García 2019), we show that they have
an adverse e�ect in our case, as they reduce the rank of the observation matrix,
and therefore lead to not well-posed reconstruction problems.

3 Model, De�nitions and Notations

We de�ne the model we study, and we make notations we use precise. We �rst in-
troduce the reaction-di�usion system we study (Section 3.1), then we give notations
concerning network reconstruction (Section 3.2), and we conclude with symmetries
(Section 3.3). All main notations are gathered in Table 1.

3.1 Reaction-Di�usion Systems

We write (N ; E) a possibly directed, (strongly, if directed) connected graph ofN
nodes, whereN is the nodes set, andE is the edges set. The positive vectors� =
(� 1; : : : ; � N ) and � = ( � 1; : : : ; � N ) gather the epidemiological parameters associated
to each node of the graph (details about their meaning are given in Section 2.1).
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Di�usion dynamics on the graph are governed by a di�usion matrix 1, which is
de�ned as follows.

De�nition 1 (Di�usion Matrix) . A di�usion matrix M on (N ; E) �rst has nonzero
entries only for nodesi; j such that there is an edgei  j in E. Secondly, the matrix
M is Metzler, that is for i 6= j , we haveM ij � 0. Thirdly, it is irreducible 2. Finally,
the sum of the coe�cients of every column is 0.

Standard Perron-Frobenius theory (Meyer 2000) shows a di�usion matrix admits a
unique stationary distribution, that is a positive vector ~� M summing to 1 such that
M~� M = 0 . Moreover, it shows that the space decomposes as the direct sumRN =
R~� M � H , where R~� M is the line directed by ~� M , and H =

�
� 2 RN j

P
n � n = 0

	

is the image of M. In particular, this implies that, in this decomposition, the
projection of any vector V 2 RN onto ~� M is (

P
n Vn ) ~� M . In parts of our work, we

renormalise the di�usion matrix by a real number � > 0, which we call the typical
time of di�usion. Conversely, 1=� is the rate of di�usion. Finally, we sometimes
useM � to denote the �true� di�usion matrix, which we aim at reconstructing.

De�nition 2 (Reaction-Di�usion System) . The reaction-di�usion dynamics
we study is given by

8
>>>>><

>>>>>:

dS
dt

= � � � S � I + M S

dI
dt

= � � S � I � � � I + M I

dR
dt

= � � I + M R;

(2)

where for all t � 0, S(t), I (t) and R(t) are nonnegative vectors inRN .

For instance, for each1 � n � N , Sn (t) is the number of individuals of noden in
compartment S. Standard results guarantee that the solution to Equation (2) is
global, and converges to a �x point of the form (S; 0; R), as t ! 1 (Arino 2009).
Moreover, the total population is preserved, that is

P
n (Sn (t) + I n (t) + Rn (t)) is

constant. As for the di�usion dynamics, solutions of d�=dt = M � with initial
condition � 0 having a nonzero coordinate along~� M converge to ~� M , as t ! 1 .
In particular, since the total population S + I + R satis�es this equation, and its
initial condition has a nonzero coordinate along ~� M (according to the above, it
equals

P
n (Sn (0) + I n (0) + Rn (0)) , which is nonzero asS(0), I (0) and R(0) have

nonnegative coordinates), it converges to this stationary distribution, ast ! 1 .

We conclude this section by introducing the following two de�nitions, which help
us formalise our setting.

1We adopt this terminology, for lack of a universally agreed term for these matrices between
�elds. Note that a di�usion matrix is the opposite of the Laplacian matrix of the corresponding
weighted graph (Victor M Preciado, Jadbabaie, and Verghese 2013; Poignard, Pereira, and Pade
2018).

2This is possible if the graph is directed because we ask that, in that case, it is strongly
connected.
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De�nition 3 (Con�guration) . We denote con�guration, and write C = (M ; (� ; � ) ; X 0),
a tuple consisting of a di�usion matrix M, epidemiological parameters gathered in
� and � , and an initial condition X 0 = ( S0; I 0; R0) 2 R3N . We write C the set of
con�gurations.

Con�gurations contain all the necessary information to de�ne the system of Equa-
tion (2). Therefore, we introduce the following notion of �ow.

De�nition 4 (Flows). We de�ne the �ow mapping � on the set of con�gurations
C by3:

� : C ! C
�
R+ ; R3N �

C 7! � ( C)

where, for each con�guration C = (M ; (� ; � ) ; X 0), for all t � 0, � t (C) is the value
at time t of the solution of the di�erential Equation (2), with initial condition X 0,
that is � t (C) = ( S(t); I (t); R(t)) .

Slightly abusing notations, in the following, we sometimes write�(M) when (� ; � )
and X 0 are �xed, so that the con�guration only depends on the choice of the
di�usion matrix. Moreover, for any typical time of di�usion � > 0, we write � � =
�

�
M
�

�
, that is the �ow obtained by replacing M by M=� in Equation (2).

3.2 Network Reconstruction

We now introduce notions directly linked with network reconstruction: the obser-
vation matrix (Tyrcha and Hertz 2014), and the vectors of estimates of the reaction
terms, and the derivatives. Let (S; I; R ) be the solution of Equation (2), for some
con�guration C = (M ; (� ; � ) ; X 0). We do not observe the whole trajectories, but
only some samples of them. For some integerK � 1, let us then consider the
sampling times 0 = t0 < t 1 < t 2 < : : : < t K . Let, for each noden, Ŝn (tk ) be the
(possibly noisy) observation of compartmentS in node n at time tk , (and likewise
for the other compartments). We can also estimate the vectors of derivatives, and of
reaction terms, of Equation (2), from the observations, as is done in Shandilya and
Timme (2011). For every 1 � k � K , we de�ne �̂ S (tk ) = � � � Ŝ(tk ) � Î (tk ) the vec-

tor of reaction terms on S at time tk , and D̂S (tk ) =
�

Ŝ(tk ) � Ŝ(tk � 1)
�

(tk � tk � 1) � 1

the estimate of the derivative on S at time tk . We do likewise for the other com-
partments.

De�nition 5 (Observation matrix, derivatives and reaction terms). Let the obser-
vation matrix on S be

ÔS =

0

B
@

Ŝ1(t1) : : : Ŝ1(tK )
...

. . .
...

ŜN (t1) : : : ŜN (tK )

1

C
A 2 M N � K (R) :

3We write C
�
R+ ; R3N

�
the set of continuous functions from R+ to R3N .
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Note likewise ÔI the observations onI , and ÔR those on R. De�ne �nally the
matrix by block Ô (( tk ) ; �(M)) =

�
ÔS ; ÔI ; ÔR

�
2 M N � 3K (R). This is the obser-

vation matrix associated with the sampling times(tk ), and the �ow �(M) .

Likewise, we write �̂ S ; D̂S 2 M N � K (R) the matrices of reaction terms (resp.
derivatives) on S, and likewise for the other compartments. We �nally de�ne

�̂ = ( �̂ S ; �̂ I ; �̂ R ) 2 M N � 3K (R) and D̂ =
�

D̂S ; D̂ I ; D̂R

�
2 M N � 3K (R).

3.3 Symmetries

As we see in our study, symmetries of the trajectories have a crucial impact on
the identi�ability of the di�usion matrix. Let us therefore introduce the following
related notions. We write S N the symmetric group of order N , and � its elements,
which are called permutations. We write P(� ) the permutation matrix associated
to the permutation � . Then, for any V 2 RN , P(� )V = V if, and only if, for every
orbit of � , for every i; j in this orbit, we have Vi = Vj . A vector X = ( S; I; R ) is
symmetric with respect to � if P(� )S = S, and likewise for I and R. This notion
extends to groups of permutations, as follows. LetH be a subgroup ofS N , and
de�ne Fix( H) (Lang 2012) the space of vectors stable byH, that is:

Fix( H) =
�

V 2 RN j 8� 2 H ; P(� )V = V
	

:

For a set S � RN , for X = ( S; I; R ) 2 R3N , we write X 2 S to mean that S, I
and R belong to S. Then, X = ( S; I; R ) is said to be symmetric with respect to
H if X 2 Fix( H). This extends to �ows by saying that a �ow (S; I; R ) = �( C) is
symmetric with respect to H if, for all t � 0, we have� t (C) 2 Fix( H). Finally, we
say that a con�guration C = (M ; (� ; � ) ; X 0) is symmetric with respect to some
permutation � if, writing P = P(� ), we haveM = PMP � 1, P � = � , P � = � and
PX 0 = X 0. We then say � is a con�guration automorphism of C, extending in a
straigthforward way the notion of graph automorphism (Hell and Nesetril 2004).
Indeed, if � is an automorphism of C, then it is in particular an automorphism of
the underlying weighted graph, meaning that for all nodesi; j 2 N , the edgesi  j
and � (i )  � (j ) have the same weight: M i;j = M � ( i ) ;� ( j ) . We write Aut( C) the
group of con�guration automorphisms of C.

Finally de�ne, for all 1 � i < j � N , and for all 1 � k � N � 1, the redirection
matrix

Z i;j;k = Ek;i � Ek;j � EN;i + EN;j ;

where the E r;s 's matrices are the vectors of the canonical basis ofM N (R). This
matrix removes one unit of rate from the edgej  k, and adds one unit of rate
on the edgei  k. It does the reverse with respect to the nodeN , taking one
unit of rate from i  N and adding it to j  N , in order to enforce the fact
that the sums of the columns ofZ i;j;k vanish, that is as much rate goes to each
node than goes out. The matrixZ i;j;k is not a di�usion matrix (it has o�-diagonal
negative coe�cients). However, thanks to the � EN;i + EN;j term, adding a small
enough multiple of Z i;j;k to a di�usion matrix, with non-zero entries at coordinates
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(k; j ) and (N; i ), results in a di�usion matrix. For the sake of clarity, we use node
N as a �pivot�, but could have used any other node. Indeed, matrices of the form
Z i;j;k � Z i;j;l balance modi�cations on edgesi  k and j  k by corresponding ones
on edgesi  l and j  l , so that using them makes nodeN loose its speci�city.

4 Well-Posedness, Di�usion Rate and Symmetries

We study, from a theoretical standpoint, the well-posedness of the reconstruction
problem, (Section 4.1), the in�uence of the di�usion rate (Section 4.2), and the role
played by symmetries (Section 4.3).

4.1 Well-Posedness of the Reconstruction Problem

We now show the di�usion matrix and initial condition generating the trajecto-
ries observed are almost everywhere unique, which implies that the reconstruction
problem is almost everywhere well posed. We have the following characterisation
of the set of di�usion matrices M which produce the same trajectories asM � (see
Appendix 7 for a proof, and likewise for future results).

Lemma 6 (Di�usion Matrices Generating the Same Trajectories). Let M � be a
di�usion matrix, and write (S; I; R ) = � (M � ). Then, every matrix M = M � + H ,
such that �rst M is a di�usion matrix, and secondly such that for all t � 0, we
have4 � t (M) 2 ker H , produces the same trajectories asM � .

As a result, provided the vector space spanned by the vectorsS(t), I (t) and R(t),
for t � 0, is the whole spaceRN , then there is a unique di�usion matrix generating
the trajectories (as the only H possible vanishes over the whole space, therefore
vanishes). Therefore, a fundamental question governing the issue of the unicity,
and consequently of the possibility of reconstruction, of the di�usion matrix is the
existence of strict subspaces ofRN in which the trajectories evolve. This moreover
gives us a seemingly easy to check criterion to evaluate if the di�usion matrix
generating a given trajectory is unique, when there is no noise on the observations.
Indeed, we can check if the observation matrix has rankN , which is su�cient to
guarantee the uniqueness. However, this criterion is not practical, as we explain
below. First however, we see that, often, the trajectories do generate the whole
space.

Proposition 7 (Almost Everywhere Well-Posedness). Let 0 � t1 < ::: < t N < 1
be a subdivision of the nonnegative real half-axis. Then, for almost everyM, X 0,
for all � , � , writing C = (M ; (� ; � ) ; X 0), the space generated by the samples of the
trajectories at instants t1; :::; tN (that is � t 1 (C); : : : ; � t N (C)), is equal to RN .

Therefore, linking with Lemma 6, this shows the reconstruction problem is almost
everywhere well posed. This might give the impression the reconstruction problem
is solved, for almost everyM and X 0, when observations are not noisy. Indeed,

4As explained in Section 3.3, � t (M) 2 ker H means that S(t ), I (t ) and R(t) belong to ker H .
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assume the space generated by the trajectories is the whole ofRN . Then, the ob-
servation matrix Ô (( tk ) ; �(M � )) has rank N . We therefore know the image ofM �

on a basis, which fully determines it. However, the conditioning of the observation
matrix is often poor in practise, so that reconstruction of M � by extracting a basis
is ine�cient. Nonetheless, the fact the di�usion matrix is often unique means that,
when running a reconstruction algorithm, we can have good hope it will succeed in
�nding a (at least relatively) good �t. We discuss it in the numerical simulations.

4.2 Di�usion Rate

Let us study the in�uence of the di�usion rate on the feasibility of the network
reconstruction. One di�culty of the network reconstruction problem is the condi-
tioning of the observation matrix (De�nition 5), which may be poor. In particular,
its numerical rank may be signi�cantly lower than N , as observed also in Prasse
and Van Mieghem (2020a). In our case, this may be partly due to the homogenisa-
tion performed by the di�usion dynamics. Indeed, given di�erent epidemiological
parameters, and di�erent population sizes, the internal dynamics of the di�erent
nodes evolve di�erently. However, the di�usion dynamics tends to homogeneise
each compartment, so that S(t) tends to a vector proportional to the stationary
distribution, ~� M , and likewise for I (t) and R(t). As a result, the di�usion dynamics
tends to worsen the conditioning of a basis. This e�ect depends on the time-scale
at which the di�usion dynamics occurs, with respect to that at which the reactions
in each node occur. We �rst show, in the following Proposition 8, that when the
typical time of evolution of the di�usion dynamics, � , goes to0, and in the presence
of �xed epidemiological parameters, the trajectories tend to those of a scalar SIR
system, multiplied by the stationary distribution. We express the coe�cients of
this scalar system in terms of the� n 's, the � n 's and the stationary distribution.

Proposition 8 (Limit Trajectories for Di�usion Rate going to In�nity) . Let C =
(M ; (� ; � ) ; X 0) be a con�guration, and assume the initial condition X 0 is such that
S0, I 0 and R0 are proportional to the stationary distribution ~� M . Write (s; i; r )
the solutions of the scalar system

8
>>>>><

>>>>>:

ds
dt

= � ~�si

di
dt

= ~�si � ~�i

dr
dt

= ~�i;

with s(0) =
P

n Sn (0), and likewise for i and r , and with

~� =
X

n

� n ~� M (n)2; and ~� =
X

n

� n ~� M (n):

Then, for any T > 0, � � (C) ! (s~� M ; i ~� M ; r ~� M ), as � ! 0, uniformly on t 2 [0; T].

Proposition 8 is immediate when the stationary distribution ~� M is uniform, as the
trajectories are identically equal to the limit given in the statement. However, this
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case is not common, as even the fact the di�usion matrix is symmetrical is not
enough to ensure it has a uniform stationary distribution.

Let us note that, in a di�erent perspective, but related to some extent in spirit,
Prasse and Van Mieghem (2020b) have shown that the steady-state vector of a
SIS epidemic on a network tends towards a limit proportional to the principal
eigenvector of the adjacency matrix, when the basic reproduction number tends
towards the epidemic threshold.

Then, from Proposition 8, we immediately have the following corollary which shows
that a quick di�usion diminishes the numerical rank of the observation matrix. Let
us recall that the numerical rank of a matrix with threshold � is the number of
singular values of a matrix of modulus greater than� .

Corollary 9 (Numerical Rank of the Observation Matrix for Di�usion Rate going
to In�nity) . We make the same assumptions as in Proposition 8. Let, for some
integer K � 1, (tk )1� k � K be a family of sample times. Let� > 0, and let us

write Ô (( tk ) ; � � (M)) the observation matrix associated with thetk 's, and the �ow
� � (M) . Then, the numerical rank, with threshold � , of the matrix Ô (( tk ) ; � � (M))
goes to1, as � ! 0 (but for a �nite number of thresholds � 5).

4.3 Symmetries

Thanks to Lemma 6, we know that the unicity of M is linked to the dimension of
the vector space spanned by the �ow�( C). We now show that symmetries of the
con�guration are one cause which can lower this dimension, and therefore a�ect
the well-posedness of the reconstruction problem. Indeed, when the trajectories
have symmetries, then the space spanned by�(M) has dimension lower thanN .
Proposition 10 below shows that this happens whenever the di�usion matrix is
symmetrical with respect to some groupH (implication 2 ) 1), and that this is in
fact an equivalence (implication 1 ) 2).

Proposition 10 (Networks Generating Symmetrical Trajectories). Let M be a
di�usion matrix, � ; � be the vectors of epidemiological coe�cients, andH be a
subgroup ofS N . Assume that � and � are symmetric with respect toH . Then, the
following conditions are equivalent.

1. Symmetries of the Trajectories. For all X 0 2 Fix( H), the �ow of (M ; (� ; � ) ; X 0)
is symmetric with respect toH .

2. Symmetrical Generating Di�usion Matrix. There exists a di�usion matrix M
such that, for all X 0 2 Fix( H), �rst H � Aut

�
M; (� ; � ); X 0

�
, and second the

�ow of
�
M; (� ; � ); X 0

�
equals the �ow of (M ; (� ; � ); X 0).

3. Stabilization by the Di�usion Matrix. The matrix M stabilizes Fix( H), that
is MFix( H) � Fix( H).

5These thresholds are the moduli of the singular values of some limiting matrix, see the proof
of the result for details.
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We now show that, in the spirit of Lemma 6, trajectories symmetrical with respect
to H are generated by di�usion matrices which di�er by a matrix Z vanishing on
Fix( H). If the number of susceptible, infected and recovered individuals is the same
at all times between several nodes, then redirecting the �ows of individuals between
these nodes does not change the trajectories. TheZ matrices formalise this idea6.
In particular, we show that Z matrices are generated by the redirection matrices.
The nodes with identical values forS, I and R are those in the same orbits underH
(Lang 2012), that is the nodesi and j such that, for some� 2 H , we havej = � (i ).

Lemma 11 (Flow Redirection within the Orbits) . Under the same assumptions
as in Proposition 10, let H be the biggest group of symmetries letting invariant
the trajectories. Then, the a�ne space of matrices producing the same trajectories
as M for every initial condition X 0 2 Fix( H) is exactly the subspace generated by
the Z i;j;k 's, for all i and j which are in the same orbit underH . This space has
dimension at least

(N � 1)(N � # f di�erent trajectories g):

The dimension of this space is a lower bound on the dimension of the a�ne space
of matrices generating the same trajectories asM. To summarize, given a di�u-
sion matrix M, we have given an explicit description of a set of matrices giving
the same trajectories asM. As a result, if the di�usion matrix we try to recon-
struct gives symmetrical trajectories, and if we have an algorithm which gives us
one solution of the reconstruction problem, then we are able to �nd many such
matrices explicitly, though we cannot single the original M out. Note that this
has consequences on the conditioning of the observation matrix. Indeed, its rank is
then necessarily bounded by# f di�erent trajectories g. As such, if the con�guration
presents symmetries, then several singular values of the observation matrix will be
zero, and in a neighbourhood ofM as well, the numerical rank will be bounded
by # f di�erent trajectories g + " . This proves that the nearest a con�guration is
to a symmetrical con�guration, the most di�cult it is to reconstruct the di�usion
matrix.

5 Numerical Simulations

We �rst describe our simulations set-up (Section 5.1), before studying numerically
the in�uence of the di�usion rate (Section 5.2), and of the graph topology (Sec-
tion 5.3). We then study the robustness of the reconstruction procedure to the
presence of noise (Section 5.4). We conclude by studying a semi-real example (Sec-
tion 5.5).

6 In fact, the Z matrices, like the di�usion matrices, describe rates. However, as long as nodes
have equal values, modifying the rates, or the �ows going out of them, becomes equivalent.
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5.1 Numerical Simulations Set-Up

Network Generation. For each numerical simulation, we start by generating a
graph from a random graph generator. We use four random graphs, with di�erent
topologies: the Erd®s-Rényi (Erd®s and Rényi 1959) and the Waxman (Waxman
1988) graphs, which are rather connected graphs, and therefore relatively �close�
to a complete graph, and the Relaxed Caveman (Fortunato 2010) and extended
Barabási-Albert graphs (Barabási and Albert 2000), which are less connected, and
exhibit a more clustered structure. In that sense, the di�usion dynamics is more
constrained by these graphs, and we expect the reconstruction problems to be easier
in that case. We study graphs of sizes ranging fromN = 20 to N = 130. For the dif-
fusion dynamics, we generate a di�usion matrix of the formM � = � � 1 (P � IdN )T ,
whereP is a stochastic matrix, and � > 0 is the typical time of the di�usion dynam-
ics7. The matrix P has nonzero entries corresponding to the edges of the graph.
The values of these entries are drawn uniformly at random (and renormalised to
ensureP is stochastic). As a consequence, the rate at which individuals leave each
node is controlled by� : for each node, it will take on average� units of time for an
individual to leave the node. The values of� range from 10� 3 to 2 � 10. For the
reaction dynamics, the � n 's and � n 's are drawn according to a lognormal law, with
means �� and �� chosen as follows, and standard deviations0:8�� and 0:8�� . First, the
mean �� of the � n 's is equal to3� 10� 2 (meaning that individuals heal in 30 days on
average). Then, we �x R 0 = 1 :2, and we choose�� such that8 R 0 = �� k~� M � k2 =�� .

Trajectories Simulations. Next, we simulate the ground truth trajectories. We
�rst run the simulations on a deliberately long (from visual inspections) time inter-
val [0; 1000](in days). We use a uniform time discretisation step of(� t)groundtruth =
5� 10� 3, and a Runge-Kutta discretisation scheme of order 4. Then, we determine
an e�ective time interval [0; T1 ], with T1 � 1000, on which the dynamics truly
unfolds, so as to avoid considering times for which it has already converged to
its steady state9. The train set in which we sample the observations is[0; Ttrain ],
with Ttrain = 20% T1 . Finally, in each experiment, we use as initial condition
X 0 = ( S(0); I (0); 0) = ( s0 ~� M � ; i 0 ~� M � ; 0), where i 0 = 5%, and s0 = 1 � i 0. As
a result, the vector of initial susceptibles S(0) is proportional to the stationary
distribution of M � , and likewise for I (0) (and R(0)).

Reconstruction Algorithm. We sample the trajectories with various sample
steps (� t)sample , ranging between2 � 10� 3 and 2 � 10� 1. We compute the recon-

7We use the notation Id N to mean the identity matrix of order N .
8This ensures that, when the � n 's and the � n 's have no variance, the basic reproduction number

(Diekmann, J. A. P. Heesterbeek, and Roberts 2009) of the scalar system of Proposition 8 is equal
to R 0 . The value R 0 = 1 :2 is slightly above the threshold 1, ensuring an epidemic does happen.
Scaling the �� like this ensures the dynamics has some degree of invariance with respect to the size
of the network.

9To do this, for each trajectory, we determine a time T1 at which it has converged to its steady
state, by asking that beyond T1 , the total number of infected individuals is either less than 2%
the size of the whole population, or less than 1=0:99 of its �nal value.
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structed di�usion matrix by solving

min
M 2M N (R)



 D̂ � R̂ � MÔ





2
;

such that

8
>><

>>:

M i;n � 0; i 6= n;
NX

i =1

M i;n = 0 for each node n:

This is a convex optimisation problem. We solved it using the Python package
CVXPY (Diamond and Boyd 2016; Agrawal et al. 2018). We write M rec the
matrix obtained. Moreover, to truly enforce the fact M rec is a di�usion matrix
(atoning for small numerical errors), we post-processed the matrix obtained by
cancelling the o�-diagonal negative coe�cients, and enforcing that column sums
vanish. Precisely, for every noden, we replaced the diagonal coe�cient M rec (n; n)
by �

P N
i =1 ;i 6= n M rec (i; n ). The complexity of the algorithm is O

�
N 23K

�
, which is

the standard cost for solving the regression.

Evaluation Metrics. To assess the reconstruction performance, we use two met-
rics. First, we use the area under the receiver operating characteristic curve (AUC)
(Fawcett 2006) on the presence of edges, as Prasse and Van Mieghem (2020a).
Secondly, we evaluate the prediction error, de�ned as follows. For knownX 0 and
epidemiological parameters, we de�ne the prediction error as the norm of the dif-
ference between the trajectories computed with the true di�usion matrix M � , and
those computed with the reconstructed di�usion matrix M rec , by

PredictionError =

1
N

1
T1 � Ttrain

pmaxX

p=1


 � t p (M � ) � � t p (M rec )


 2

(tp � tp� 1) ; (3)

where pmax = b T1 � T train
(� t )groundtruth

c, and (tp) is the discretisation scheme used for the

simulations, conducted on the test interval [Ttrain ; T1 ].

Let us now introduce the discrepancy error, which measures the discrepancy be-
tween the trajectories computed with a di�usion matrix M, and the limit trajec-
tories of Proposition 8. Let M be a di�usion matrix, and let ~� M be its stationary
distribution. Let (s; i; r ) be the limit trajectory of Proposition 8, with values in
R3. Then, (s~� M ; i ~� M ; r ~� M ) is a trajectory with values in R3N . We de�ne the
discrepancy error as the error between the solution of Equation (2), when the di�u-
sion matrix is M=� , and the trajectory (s~� M ; i ~� M ; r ~� M ). For (tp) the discretisation
scheme used for the simulations, andpmax the number of tp 's, it is de�ned by

DiscrepancyError (� ) =

1
N

1
T1

pmaxX

p=1




 � t p (

M
�

) � (s(tp)~� M ; i (tp)~� M ; r (tp)~� M )






2

2
(tp � tp� 1) :
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Figure 1: Discrepancy error as a function of the typical time of di�usion � , for two
random graphs of50 nodes

Finally, we also consider in our numerical simulations the numerical rank of the
observation matrix.

Plots Displayed. For each setting, we conduct several independent runs, and
perform the reconstruction separately on each one of them, to average over the
stochasticity of the choices. The plots we display are box plots, where the solid lines
are the medians of values, and the shaded areas gather the [10%, 90%] intervals of
values.

5.2 In�uence of the Di�usion Rate

We now study numerically the in�uence of the di�usion rate, and we start by
illustrating our theoretical results. First, on Figure 1, we display the discrepancy
error as a function of the typical time of di�usion � . The results are coherent with
Proposition 8, as we see that it indeed goes to0, as � ! 0. The convergence looks
moreover almost exponential (as we use a log-log scale): this may be due to the
fact it is driven by terms exp (Mt), restricted to a space where the biggest real
parts of the eigenvalues ofM are negative (see the proof for details). Second, on
Figure 2, we show the numerical rank of the observation matrix as a function of� .
The results are coherent with Corollary 9, as we see the numerical rank gets lower
and lower, as� ! 0. It is lower for the Erd®s-Rényi graph, probably because it is
denser than the Relaxed Caveman graph, and therefore is closer to some kind of
average system, with more mixing between the nodes10.

Let us now investigate the consequences the speed of di�usion has for the practi-

10 In our simulations, the numerical rank reaches 5 at the lowest, but our implementation did
not allow us to use yet lower values of � , which would have allowed us to reach smaller numerical
ranks. However, note that we used the Numpy de�ned threshold for the numerical rank: using a
bigger threshold, equal to 10� 6 , the numerical rank reached 2.

18



Figure 2: Numerical rank, of the observation matrix as a function of the typical
time of di�usion � , for two random graphs of 50 nodes, for a �xed family of sample
times

cal reconstruction problem. We �rst show on Figure 3 the AUC as a function of
the typical time of the di�usion dynamics � , for a �xed sampling rate. The AUC
increases as the typical time of the di�usion dynamics increases, as we expected.
It is bigger for the Relaxed Caveman graph, which has �more structure� than the
Erd®s-Rényi one. Second, we study how increased sampling may help reconstruc-
tion for small typical times of di�usion. On Figure 4, we show a heatmap of the
AUC, with di�erent sampling steps (� t)sample 2 [5 � 10� 3; 9 � 10� 2], and typical
times of di�usion � 2 [10� 2; 6], for a Relaxed Caveman graph of50 nodes. The
darker the color, the smaller the AUC is. On each row, we see colors get darker
as we go to the right: this means that, for each �xed � , the AUC deteriorates
as the sampling step increases. On each column, we see colors get darker as we
move to the top: this means that, for each sampling step, the AUC worsens as�
decreases. Therefore, reconstruction is indeed harder for quick di�usion dynamics,
but increasing sampling may help counterbalance this.

5.3 In�uence of the Network Topology

We now study numerically the in�uence of the network topology on the estimation
and prediction problems. We present, on Figure 5, the AUC as a function of
the number of nodes, for four types of random graphs. First, the AUC is often
moderately good, and decreases as the number of nodes increases. Note that we
deliberately considered a di�cult scenario. Indeed, as allS, I and R components of
the initial condition are proportional to the stationary distribution of the di�usion
matrix, we only observe the di�usion indirectly, through the unequal evolution
of the compartments in the di�erent nodes, and their subsequent di�usion in the
network. Using generic initial conditions makes it possible to observe directly the
di�usion, so that the reconstruction problem is easier. Second, as expected, the
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Figure 3: AUCs as a function of the typical time of di�usion � , for two random
graphs of size50, for a �xed family of sample times

Figure 4: Heatmap of AUCs with respect to the typical time of di�usion � (columns)
and the sampling step(� t)sample (lines), for a Relaxed Caveman graph of size50
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Figure 5: AUC on the Adjacency Matrix for Various Graphs and Sizes of Graphs

more structured the graph, the better the AUC. Indeed, it is best for the Barabási-
Albert graph, and the second best is the Relaxed Caveman graph. The Waxman
gaph, and above all the Erd®s-Rényi one, which are denser, and where node values
are mixed more, exhibit the worse AUCs. The dispersion around the median is
greater for the �more structured graph�: we believe it is due to the fact that small
errors in crucial nodes may lead to huge consequences.

On Figure 6, we show the prediction error. We see the prediction errors in general
are quite low, less than10� 3:5, and diminish with the number of nodes. Moreover,
as the number of nodes increases, the Erd®s-Rényi graph consistently exhibits the
lowest error, followed by the Waxman graph. These results are consistent with each
other, in the sense that it seems the more the graph has connections, the easiest it
is to predict the future behaviour of the system (more edges, either through more
nodes, or through the topology, in the case of the Erd®s-Rényi graph). We see that
they are opposite to the results for the AUCs: this tends to suggest that the more
structured the topology, the easier it is to reconstruct the network, but the more
mixing there is, the easiest it is to predict the future evolution of the system, which
sounds reasonable enough.

5.4 In�uence of Noise

We now study the in�uence of noise. We assume that the observation matrix is
altered by an additive white Gaussian noise, such that, for each noden, for each
t � 0, as far as the susceptible compartment is concerned, we observe

Ŝn (t) = Sn (t) + �
(� t)sample

10
~� M (n)

3
E(t);

where � is the noise standard deviation, andE(t) � N (0; 1) (with all the E(t)'s
independent). We do likewise for the other compartments. As a result, for each
node, for each compartment, the noise scales with the size of the node population,
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Figure 6: Prediction Error ( log 10) for Various Graphs and Sizes of Graphs

Barabási-Albert Graph
� AUC Prediction

Error ( log 10 )
10� 3 0.74 [0.67, 0.78] -4.8 [-4.9, -4.6]
10� 2 0.64 [0.59, 0.69] -4.3 [-4.5, -4.3]
10� 1 0.63 [0.58, 0.67] -4.2 [-4.4, -3.9]

1 0.56 [0.55, 0.57] -4.1 [-4.2, -4.0]

Table 2: AUC and Prediction Error ( log 10) on a Barabási-Albert graph of size 50,
for di�erent noise standard deviations. Median, and [10%, 90%] intervals of the
results over the independant simulations, indicated.

renormalized by the number of compartments (3). On Table 2, we present the
AUC and the logarithm of the prediction error, as a function of � , for a Barabási-
Albert graph of size 50. As far as the AUC is concerned, we see that noise degrades
performances. However, signal is entirely lost, with AUCs close to 0.5, only for
� = 1 , which shows some degree of robustness of the procedure. The prediction
error is more robust to the presence of noise than the AUC, as it remains low even
for � = 1 : this shows again that the prediction task is easier than the reconstruction
task.

5.5 Semi-Real Data Example

Finally, we conducted simulations on a semi-real example. First, we selected 45
cities with airports in France, and created the graph of the �ights between them:
each node is a city, and there are edges between nodesn1 and n2 if there is one
(or more) �ight leading from n1 to n2. The graph is strongly connected. Then, we
computed the relative sizes of the populations of the cities. Finally, we used gradient
descent to compute a di�usion matrix whose stationary distribution was as close
as possible to the vector of the relative sizes. The resulting network can be seen in
Figure 7a. It was plotted with the graph-tool package (Peixoto 2014). The greater
the value of the coordinate of the stationary distribution corresponding to a node,
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(a) Original network
(b) Relative errors for the reconstructed
network

Figure 7: Original network, and relative errors for the reconstructed network. On
the original network, cities discussed in the text are in yellow: Paris (top), Rennes
(left), Lyon (middle right), Montpellier (bottom). On the reconstructed network,
the edge colours show the size of the relative errors: small (green), middle (pink),
large (yellow).

the bigger the node is: we logically see that the biggest node is Paris. The greater
the value of the di�usion matrix corresponding to an edge, the bigger the edge size is.
Then, we conducted our simulations as described in Section 5.1 (which means that
the epidemic part of the example is synthetic). The AUC we obtained after training
was 0:74, which is quite satisfying. We displayed in Figure 7b the relative errors
between the original di�usion matrix, and the reconstructed one: for each non-
diagonal entry, the relative error is jM � (i; j ) � M rec (i; j )j =(M � (i; j ) + M rec (i; j )) .
The edge colours are linked to the size of the relative errors: the smallest errors are
in green, then the middle errors are in pink, and the largest errors are in yellow. In
particular, wrongly inferring the presence of an edge leads to a big relative error.
As expected, we see that most edges linked to Paris are in green: as Paris has a
high connectivity, most edges inferred in the reconstruction indeed correspond to a
true edge.

The relative errors for the reconstruction of edgesn  i are more correlated to the
degree centrality of the destination nodesi (correlation: � 0:60, meaning that rela-
tive errors on edges diminish when the centrality of destination nodesi increases),
rather than the degree centrality of the origin nodes n (correlation: 0:45). This
shows that what matters for reconstruction is the extent to which errors might
propagate in the network. Indeed, if an edge goes to a node with high centrality,
then an error on this edge will lead to errors further in the network. However, if this
edge leaves a node with high centrality, but only goes to a node with low centrality,
then errors on this edge will not have huge consequences for the overall reconstruc-
tion. The importance of this �error propagation� notion is further emphasised by
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